Dissemination of Web-Based Data Weigher Survey Application as A Quantitative Research Aid Facilitator
DOI:
https://doi.org/10.28932/ice.v5i2.7548Keywords:
big questionnaire data, data weigher analysis, questionnaire, surveyAbstract
The knowledge dissemination of the data weighing survey application was motivated by the need for professionals, lecturers, or researchers, to retrieve respondents' data online as well as to process quantitative data directly. This survey application is in the form of a web-based questionnaire system using the Order Average Data Weigher Analysis (DWA) method which can collect and process large amounts of data or Big Questionnaire Data (BQD). The questionnaire system was made not to focus on one area or goal but can be used by all parties from any part. The method of implementing this knowledge dissemination is in the form of training, both theory and practice, directly creating and filling out online questionnaires. The purpose and benefits of this questionnaire system for professionals, lecturers, or researchers are to facilitate quantitative questionnaire research easily. This can happen because in the questionnaire application with the DWA system, there is an effective and efficient method for processing large amounts of questionnaire data automatically which is directly connected to G-Sheets on a web-based questionnaire system. The result and impact of this knowledge dissemination is that the participants benefit in the form of new knowledge of data scales and applications that can be directly used in assisting quantitative questionnaire-based research.References
Anggraeni, E. Y. & Irviani, R. (2017). Pengantar Sistem Informasi (1st ed.). Penerbit Andi.
Assauri, S. (2014). Manajemen Pemasaran. PT Raja Grapindo.
Bekti, B. H. (2015). Mahir Membuat Website Dengan Adobe Dreamweaver CS6, CSS dan JQuery. Penerbit Andi.
Chaffey, D., Ellis-Chadwick, F., & Mayer, R. (2020). Internet Marketing: Strategy, Implementation and Practice. Prentice Hall Inc.
Dumbill, E. (2014). Planning for Big Data (1st ed.). O’Reilly Media. https://doi.org/10.1089/big.2013.0017
Goenawan, S. I. (2019). Comparison Simulation Analysis of the Gradual Summation of a Function with Recognition of Direct Extrapolation via In Series. International Journal of Applied Science and Smart Technologies, 2(1), 59-66. https://doi.org/10.24071/ijasst.v2i1.1969
Goenawan, S. I., Natalia, C., Sejahtera, F. P., & K., A. A. (2021). Analisa Timbangan Data Dampak Positif dan Negatif Dompet Digital. Prosiding Seminar Nasional Riset dan Teknologi Terapan (RITEKTRA), Bandung: 12 Agustus 2021. Hal. A2.1 – A2.8.
Hendryadi., Tricahyadinata, I., & Zannati, R. (2019). Metode Penelitian: Pedoman Penelitian Bisnis dan Akademik. Lembaga Pengembangan Manajemen dan Publikasi Imperium (LPMP Imperium).
Irawan, H. (2021). Prinsip Kepuasan Pelanggan. Elex Media Komputindo.
Kotler, P. & Keller, K. L. (2016). Manajemen Pemasaran (Edisi 12). PT. Indeks.
Liwangsa, E. W. (2023). Perancangan Pembuatan Sistem Kuesioner Berbasis Web Menggunakan Metode Analisa Timbangan Data (ATD) Dengan Penerapan Pada Pengukuran Kepuasan Pelanggan Perusahaan Makanan. [Skripsi TA S1], FT Prodi Teknik Industri, UNIKA Atma Jaya.
Muslihudin, M. O. (2016). Analisis dan Perancangan Sistem Informasi Menggunakan Model Terstruktur dan UML. Penerbit Andi.
Nafisah, S. (2013). Grafika Komputer. Graha Ilmu.
Nazir, M. (2015). Metode Penelitian. Ghalia Indonesia.
Oentoro, D. (2014). Manajemen Pemasaran Modern. Laksbang PRESSindo.
Rizky, S. (2014). Konsep Dasar Rekayasa Perangkat Lunak. PT Prestasi Pustakaraya.
Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R & D. PT Alfabeta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stephanus Ivan Goenawan, Kumala Indriati, Agustinus Silalahi, Rory Anthony Hutagalung
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.