Optimalisasi Strategi Product Bundling melalui Pemetaan Pola Peminatan dan Pola Penjualan Produk menggunakan K-Means Clustering dan Apriori
Main Article Content
Abstract
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
By submitting an article with the title above and acceptance publication of the article, I declare that:
- Articles have never been previously published in scientific journals, proceedings or other electronic journals.
- I agree that the article copyright is fully owned by the Journal of Integrated System, Universitas Kristen Maranatha. Declaration of copyright transfer from the author's to the journal is done by completing the following form (Copyright Transfer Agreement).
Journal of Integrated System (JIS) uses a Copyright policy under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
References
Agussalim, Wardhani, R.K.P. and Anjani, A. (2023). Sales product clustering using RFM calculation model and K-Means algorithm on Primskystore. Technium Romanian Journal of Applied Sciences and Technology, 16, pp.176–182. doi:https://doi.org/10.47577/technium.v16i.9978.
Ardi, R.B., Nastiti, F.E. and Sumarlinda, S. (2023). Algoritma K-Means Clustering untuk segmentasi pelanggan (studi kasus: Fashion Viral Solo). Infotech journal, 9(1), pp.124–131. doi:https://doi.org/10.31949/infotech.v9i1.5214.
Azemi, Y. and Ozuem, W. (2023). How does retargeting work for different Gen Z mobile users? Journal of Advertising Research, 63(4), pp.2023-023. doi:https://doi.org/10.2501/jar-2023-023.
Chen, A.H.-L. and Gunawan, S.T.D. (2023). Enhancing retail transactions: a data-driven recommendation using modified RFM analysis and association rules mining. Applied sciences, 13(18), pp.10057–10057. doi:https://doi.org/10.3390/app131810057.
Chen, Q. (2024). Application of K-Means algorithm in marketing. Advances in Economics Management and Political Sciences, 71(1), pp.178–184. doi:https://doi.org/10.54254/2754-1169/71/20241485.
Dey, D. and Banerjee, K. (2023). AI driven customer segmentation and recommendation of product for super mall. Journal of Mines, Metals and Fuels, 71(5), pp.656–660. doi:https://doi.org/10.18311/jmmf/2023/34166.
Ergin, E., Gumus, M. and Yang, N. (2021). An empirical analysis of intra-firm product substitutability in fashion retailing. Production and Operations Management, 31(2), pp.607–621. doi:https://doi.org/10.1111/poms.13569.
Fernando, A.M.P., Adhikari, A.M.T.T., Wijesekara, W.H.A.T.K., Vithanage, T.V.T.I., Gamage, A. and Jayalath, T. (2022). Planning marketing strategies in small-scale business using data analysis. 2022 3rd International Informatics and Software Engineering Conference (IISEC), Informatics and Software Engineering Conference (IISEC), 2022 3rd International, pp.1–6. doi:https://doi.org/10.1109/IISEC56263.2022.9998200.
Ginantra, N. L. W. S. R. et al. (2021) Data mining dan penerapan algoritma. 1st edn.. Yayasan Kita Menulis.
Gustriansyah, R., Suhandi, N. and Antony, F. (2020). Clustering optimization in RFM analysis based on K-Means. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), p.470. doi:https://doi.org/10.11591/ijeecs.v18.i1.pp470-477.
Husein, A.M., Setiawan, D., Sumangunsong, A.R.K., Simatupang, A. and Yasmin, S.A. (2022). Combination grouping techniques and association rules for marketing analysis based customer segmentation. SinkrOn, 7(3), pp.1998–2007. doi:https://doi.org/10.33395/sinkron.v7i3.11571.
Hussein, R.M., Khaw, K.W., Gaber, A. and Chew, X. (2024). Examining the behaviors and preferences of online shopping customers using clustering techniques. Journal of Soft Computing and Data Mining, 5(1). doi:https://doi.org/10.30880/jscdm.2024.05.01.009.
Izzah, L. and Jananto, A. (2022). Penerapan algoritma K-Means Clustering untuk perencanaan kebutuhan obat di Klinik Citra Medika. Progresif: Jurnal Ilmiah Komputer, 18(1), p.69. doi:https://doi.org/10.35889/progresif.v18i1.769.
John, S. and Thaiyalnayaki, M. (2024). Customer satisfaction in retail services – a study with reference to Kottayam District in Kerala. Salud Ciencia y Tecnología - Serie de Conferencias, 3, pp.907–907. doi:https://doi.org/10.56294/sctconf2024907.
Kamalludin, A., Budianto, U., Sakti, D.V.S.Y. and Christian, J. (2023). Penerapan algoritma klasterisasi K-Means kinerja produk dengan analisis Recency, Frequency, Monetary pada Kafe XYZ. Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), [online] 2(1), pp.258–266. Available at: https://senafti.budiluhur.ac.id/senafti/article/view/631 [Accessed 20 Mar. 2025].
Kim, J., Lee, C., Lee, W.-H., Ok, Y. and Thi, T. (2022). Idiosyncratic volatility, turnover and the cross-section of stock returns: evidence from the Korean stock market. International Journal of Emerging Markets, 18(12), pp.6192–6213. doi:https://doi.org/10.1108/ijoem-09-2021-1499.
Martins, P., Rodrigues, P., Martins, C., Barros, T., Duarte, N., Dong, R.K., Liao, Y., Comite, U. and Yue, X. (2021). Preference between individual products and bundles: Effects of complementary, price, and discount level in Portugal. Journal of Risk and Financial Management, 14(5), p.192. doi:https://doi.org/10.3390/jrfm14050192.
Oetama, R. (2024). Product bundling strategy for office supplies retailer through association rules mining: Comparative study of Apriori and ECLAT algorithms. Indonesian Journal of Computer Science, 12(6). doi:https://doi.org/10.33022/ijcs.v12i6.3516.
Prasetyo, S.S., Mustafid, M. and Hakim, A.R. (2020). Penerapan fuzzy C-Means kluster untuk segmentasi pelanggan e-commerce dengan metode Recency, Frequency, Monetary (RFM). Jurnal Gaussian, 9(4), pp.421–433. doi:https://doi.org/10.14710/j.gauss.v9i4.29445.
Rahmadsyah, A. and Mayasari, N. (2022). Grouping goods with the association rule method using A priori algorithms in modern retail stores. International Journal Of Science Technology & Management, 3(6), pp.1527–1532. doi:https://doi.org/10.46729/ijstm.v3i6.637.
Rahmatillah, I., Sudirman, I.D. and Sharif, O.O. (2023). Unveiling consumer behavior patterns using K-Medoids and association rule: a study on a medium-sized grocery store. 2023 International Conference on Digital Business and Technology Management (ICONDBTM). doi:https://doi.org/10.1109/icondbtm59210.2023.10327325.
Ramadhan, D.R. and Rokhman, N. (2020). Segmentation-based sequential rules for product promotion recommendations as sales strategy (case study: Dayra Store). IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(3), p.243. doi:https://doi.org/10.22146/ijccs.58107.
Rimbano, D., Marlita, D., Yuniarty, M., Anggraini, D. and Andrinaldo, A. (2023). Effectiveness and efficiency of working capital use in industrial sector companies exchange in 12th Year Proceedings International Conference on Business Economics & Management, pp.566–578. doi:https://doi.org/10.47747/icbem.v1i1.1275.
Rizaldi, D. and Adnan, A. (2021). Market basket analysis menggunakan algoritma Apriori: kasus transaksi 212 Mart Soebrantas Pekanbaru. Jurnal Statistika dan Aplikasinya, 5(1), pp.31–40. doi:https://doi.org/10.21009/jsa.05103.
Sarkar, M., Puja, A.R. and Chowdhury, F.R. (2024). Optimizing marketing strategies with RFM method and K-Means Clustering-based AI customer segmentation analysis. Journal of Business and Management Studies, [online] 6(2), pp.54–60. doi:https://doi.org/10.32996/jbms.2024.6.2.5.
Singh, J., Mittal, M. and Pareek, S. (2016). Customer behavior prediction using K-Means Clustering Algorithm. in: M. Mittal and N.H. Shah, eds., Optimal Inventory Control and Management Techniques. IGI Global Scientific Publishing, pp.256–267. doi:https://doi.org/10.4018/978-1-4666-9888-8.ch013.
Situmorang, B.H., Isra, A., Paragya, D. and Adhieputra, D.A.A. (2024). Apriori algorithm application for consumer purchase patterns analysis. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 21(1), pp.15–20. doi:https://doi.org/10.33751/komputasi.v21i1.9260.
Susanto, J. and Fenriana, I. (2024). Web-based POS with Apriori Market Basket Analysis. bit-Tech, [online] 6(3), pp.271–280. doi:https://doi.org/10.32877/bt.v6i3.926.
Syrotkina, O., Bhatta, S. and Jacob, K. (2023). Recency-Frequency-Monetary analysis and recommendation system using Apriori algorithm on e-commerce sales data. 2023 13th International Conference on Advanced Computer Information Technologies (ACIT). doi:https://doi.org/10.1109/acit58437.2023.10275513.
Wahyuni, S., Wulansari, T.T. and Fahrullah (2023). Segmentasi pelanggan berdasarkan analisis Recency, Frequency, Monetary menggunakan algoritma K-Means pada CV. Toedjoe Sinar Group. JURTI (Jurnal Rekayasa Teknologi Informasi), 7(2), pp.180–180. doi:https://doi.org/10.30872/jurti.v7i2.8748.
Yahya, M., Parenreng, J.M., Fathahillah, F., Wahid, A., Wahid, M.S.N. and Fajar B, M. (2024). A machine learning model for local market prediction using RFM model. Elinvo (Electronics, Informatics, and Vocational Education), 9(1), pp.24–37. doi:https://doi.org/10.21831/elinvo.v9i1.58671.
Yin, W. and Xu, B. (2021). Effect of online shopping experience on customer loyalty in apparel business-to-consumer ecommerce. Textile Research Journal, 91(23-24), p.004051752110165. doi:https://doi.org/10.1177/00405175211016559.