Effect of Blending Sodium Lignosulfonate (SLS) and Rice Husk Ash (RHA) for Stabilization of Clay Soil

Authors

  • Erlian Tamara Jurusan Teknik Sipil, Universitas Gunadarma, Depok, 16424, Indonesia
  • Sri Wulandari Jurusan Teknik Sipil, Universitas Gunadarma, Depok, 16424, Indonesia

DOI:

https://doi.org/10.28932/jts.v21i1.7488

Keywords:

Rice Husk Ash (RHA), Clay, Consolidation, Direct Shear Strength, Sodium Lignosulfonate (SLS)

Abstract

Clay soils have relatively low bearing capacity and high compressibility. Therefore, it is necessary to improve the soil before construction begins. This research aims to analyze the effect of adding sodium lignosulfonate (SLS) and rice husk ash (RHA) as clay stabilization materials based on the parameter values of soil shear strength, compression coefficient and consolidation coefficient. The clay soil samples in this study came from the Keandra Lagoon housing project area located in Tengah Tani Subdistrict, Cirebon Regency. The results showed that the original soil with the addition of 10% rice husk ash (RHA) and 10% sodium lignosulfonate (SLS) had a deep shear angle of 26.009° with a cohesion of 0.0635 kg/cm³. The lowest value of compression index (Cc) which amounted to 0.125 cm²/min was obtained at 10% sodium lignosulfonate and 10% rice husk ash with 28 days of curing treatment. While the highest coefficient of consolidation (Cv) which amounted to 0.308 cm²/min was obtained by soil with a mixture of 10% sodium lignosulfonate and 10% rice husk ash with 0 days of curing treatment. Sodium lignosulfonate (SLS) and rice husk ash (RHA) can reduce the shrinkage expansion potential of soil based on consolidation testing.

Downloads

References

Abdurrozak, Muhammad Rifqi. "Stabilisasi tanah lempung dengan bahan tambah abu sekam padi dan kapur pada subgrade perkerasan jalan." Teknisia (2017): 416-424.

Alazigha, D. P. et al. (2016),“The swelling behaviour of lignosulfonate-treated expansive soil,” Proceedings of the Institution of Civil Engineers: Ground Improvement, 169(3), hal. 182–193. doi: 10.1680/jgrim.15.00002.

Anwar Hossain, Khandaker M. (2011), "Stabilized soils incorporating combinations of rice husk ash and cement kiln dust." Journal of Materials in Civil Engineering 23.9:1320-1327

Badan Standarisasi Nasional. 1994. Cara Uji Berat Isi Tanah. SNI 03:3637:1994. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2008. Cara Uji Berat Jenis Tanah. SNI 1964:2008. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2008. Cara Uji Kadar Air untuk Tanah dan Batuan di Laboratorium. SNI 1965:2008. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2008. Cara Uji Penentuan Batas Plastis dan Indeks Plastisitas Tanah. SNI 1966:2008. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2008. Cara Uji Penentuan Batas Cair Tanah. SNI 1967:2008. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2008. Cara Uji Penentuan Batas Susut Tanah. SNI 3422:2008. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2011. Cara Uji Konsolidasi pada Tanah Satu Dimensi. SNI 2812:2011. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. 2016. Cara Uji Kuat Geser Langsung Tidak Terkonsolidasi dan Tidak Terdrainase. SNI 3420:2016. Jakarta: Badan Standarisasi Nasional.

Bowles J.E. 1986. Sifat-sifat Fisis Tanah dan Geoteknis Tanah. Jakarta: Penerbit Erlangga.

Bradford, J. M. (1976) Fundamentals of Soil Behavior, Soil Science Society of America Journal. doi: 10.2136/sssaj1976.03615995004000040003x.

Canakci, H., Aziz, A. dan Celik, F. (2015) “Soil stabilization of clay with lignin, rice husk powder and ash,” Geomechanics and Engineering, 8(1), hal. 67–79. doi: 10.12989/gae.2015.8.1.067.

Chen, Q. dan Indraratna, B. (2015) “Deformation Behavior of Lignosulfonate-Treated Sandy Silt under Cyclic Loading,” Journal of Geotechnical and Geoenvironmental Engineering, 141(1), hal. 1–5. doi: 10.1061/(asce)gt.1943-5606.0001210.

Darwis, H. (2017) Dasar-Dasar Teknik Perbaikan Tanah. Yogyakarta : Pustaka

AQ Nyutran MG II

Depatemen Pekerjaan Umum (2007) “Perencanaan Stabilisasi Tanah dengan Serbuk Pengikat untuk Konstruksi Jalan,” (008).

Goma, J. M. dan Mwale, M. C. (2016) “Zambia’s Experience on the USE and Performance of Sulfonated Petroleum Products and Other Non-Conventional Soil Stabilizers in Road Construction,” hal. 164–171. doi: 10.1061/9780784480090.021.

Hardiyatmo, H. C. 1992. Mekanika Tanah I. Jakarta : PT. Gramedia Pustaka Utama

Hardjowigeno, Sarwono. (1989). Ilmu Tanah. Jakarta : Mediyatama Sarana Perkasa

Improvement, G., Gsp, G. dan Engineering, T. (2014) “Ground Improvement and Geosynthetics GSP 238 © ASCE 2014 158,” Geo-Shanghai 2014: Ground Improvement and Geosynthetics, (1987), hal. 158–167.

Indraratna, B. (2012) “Chemical minerological behaviour of lignousulfonate treated soil.,” GeoCongress 2012, (1999), hal. 3199–3208.

Karatai, Thomas Rukenya, et al. "Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction." Journal of Construction Engineering and Management 143.5 (2017): 04016127.

Kim, S., Gopalakrishnan, K. dan Ceylan, H. (2012) “Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct,” Journal of Transportation Engineering, 138(11), hal. 1283–1290. doi: 10.1061/(ASCE)TE.1943-5436.0000097.

Li, Y. (2019) “Laboratory and in situ evaluations of using bio-based co-product for pavement geo-materials stabilization.”

Manoppo, C, J., Manoppo, F, J. dan Rondonuwu, S, G. (2017) “Analisis Perkuatan Tanah Dengan Metode Sand Compaction Pile Pada Tanah Rawa (Studi Kasus: Jalan Tol Manado Bitung Sulut),” Jurnal Sipil Statik, 5(6), hal. 357–362.Tersedia pada: https://ejournal.unsrat.ac.id/index.php/jss/article /view/16753.

Mulyono, Tri (2017). "Klasifikasi Tanah Modul 5: Mekanika Tanah dan Pondasi"(PDF). Jakarta: Program Studi D3 Teknik Sipil Fakultas Teknik Universitas Negeri Jakarta

Mustafayeva, Arailym, et al. (2023). "Mechanical Properties and Microscopic Mechanism of Basic Oxygen Furnace (BOF) Slag-Treated Clay Subgrades." Buildings 13.12 : 2962.

Ocheme, J. I., Olagunju, S. O., Khamitov, R., Satyanaga, A., Kim, J., & Moon, S. W. (2023). Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures. Geomechanics and Engineering, 33(1), 41-51.

Olagunju, Sakiru Olarewaju, et al. (2023). "Physical, mechanical, chemical, and environmental characterization of stockpiled BOF slag as railway ballast material." Construction and Building Materials 408 : 133613.

Pavements, H. (2019) “Airfield and Highway Pavements 2019 255,” 3(Monteiro 2009), hal. 255–265.

Saleh, Abdul Rachman, and Fuad Harwadi. "Stabilisasi Tanah Lempung Lunak dengan Abu Sekam Padi (RHA) dan Kapur (CaCO3) di Kampung Satu Kota Tarakan." Jurnal Teknik UBT 1.1 (2017): 1-6.

Xiaochao, T. dan Nordfors, I. (2020) “Geo-Congress 2020 GSP 315 582,” Geo-Congress 2020 GSP, (2016), hal. 582–591.

Zhang, T., Cai, G. dan Liu, S. (2018) “Application of Lignin-Stabilized Silty Soil in Highway Subgrade: A Macroscale Laboratory Study,” Journal of Materials in Civil Engineering, 30(4), hal. 1–16. doi: 10.1061/(asce)mt.1943-5533.0002203.

Zhang, T., Cai, G. dan Liu, S. (2018) “Reclaimed Lignin-Stabilized Silty Soil: Undrained Shear Strength, Atterberg Limits, and Microstructure Characteristics,” Journal of Materials in Civil Engineering, 30(11), hal. 1–9. doi: 10.1061/(asce)mt.1943-5533.0002492.

Zhang, X. et al. (2020) “Shakedown Behavior of Yellow River Alluvial Silt Stabilized with Lignin–Lime Combined Additive,” Journal of Materials in Civil Engineering, 32(1), hal. 1–10. doi: 10.1061/(asce)mt.1943-5533.0002954.

Zheng, C., Yang, Q. dan Huang, J. (2019) “Lignin with and without Polymerization for Soil Stabilization,” Journal of Materials in Civil Engineering, 31(12). doi: 10.1061/(asce)mt.1943-5533.0002935.

Downloads

Published

2025-04-10

How to Cite

Tamara, E., & Wulandari, S. (2025). Effect of Blending Sodium Lignosulfonate (SLS) and Rice Husk Ash (RHA) for Stabilization of Clay Soil. Jurnal Teknik Sipil, 21(1), 144–157. https://doi.org/10.28932/jts.v21i1.7488