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Abstract — This study examines the use of high-performance computing to carry out multidimensional integral calculation based on
stochastic techniques, particularly in the context of random sampling integration, also known as Monte Carlo integration. Considering
that traditional methods are facing extreme difficulty especially in high-dimension when encountered with "dimensionality curse",
random sampling technique to estimate integral values is used. This technique is superior in many aspects, for example in terms of
scalability and flexibility, even in complex and irregular domains. In particular, the work concentrates on the case of calculating the
volume of a multidimensional sphere using random sampling integration technique which introduces a framework that employs the
Graphics Processing Unit (GPU) to carry out these computations more effectively. Using dimensionalities from 2 to 24, the study
compares both accuracy and computation time of the method. The results show that the random sampling integration method attains
high accuracy in the computation of @ which is used as a benchmark. The computational model is implemented in CUDA C/C++, taking
advantage of GPU parallelism to process large sample sizes, in which the computations are performed efficiently. It is demonstrated in

general that random sampling integration is a viable approach to high-dimensional problems when combined with rapid GPU
parallelization.

Keywords— Monte Carlo integration; Multidimensional integral; parallel computing; random sampling; stochastic.

Komputasi Numerik Berkinerja Tinggi dari
Integral Multidimensi Menggunakan Sampel Acak

Abstrak — Penelitian ini mengkaji penggunaan komputasi berkinerja tinggi untuk melakukan perhitungan integral multidimensi
berdasarkan teknik stokastik, khususnya dalam konteks integrasi sampling acak, yang juga dikenal sebagai integrasi Monte Carlo.
Mengingat metode tradisional menghadapi Kkesulitan ekstrem terutama pada dimensi tinggi ketika dihadapkan pada
“dimensionality curse”, teknik sampling acak digunakan untuk mengaproksimasi nilai integral. Teknik ini unggul dalam banyak
aspek, misalnya dalam hal skalabilitas dan fleksibilitas, bahkan pada domain yang kompleks dan tidak teratur. Secara khusus,
penelitian ini berfokus pada kasus perhitungan volume bola multidimensi menggunakan teknik integrasi sampling acak, yang
memperkenalkan kerangka kerja yang memanfaatkan unit pemrosesan grafis (GPU) untuk melakukan perhitungan ini secara
lebih efektif. Dengan dimensi dari 2 hingga 24, penelitian ini membandingkan akurasi dan waktu komputasi metode tersebut.
Hasil menunjukkan bahwa metode integrasi sampling acak mencapai akurasi tinggi dalam perhitungan © yang digunakan sebagai
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acuan. Model komputasi diimplementasikan dalam CUDA C/C++, memanfaatkan paralelisme GPU untuk memproses ukuran
sampel besar, di mana perhitungan dilakukan secara efisien. Secara umum, terbukti bahwa integrasi sampling acak merupakan
pendekatan yang layak untuk masalah multidimensi ketika dikombinasikan dengan paralelisasi GPU yang cepat.

Kata kunci— Integral multidimensi; integrasi Monte Carlo; komputasi paralel; sampling acak, stokastik.

I. INTRODUCTION

Numerical integration is one of the most versatile and important techniques employed in scientific computation. It allows
the user to compute definite integrals for functions that would otherwise be difficult to analyze. For example, when single or
multidimensional integrals are involved, many traditional deterministic integration techniques like Gaussian quadrature or
even trapezoidal and Simpson’s rules [1] perform quite inefficiently. These traditional methods are numerically “hard” due
to the exponentiation of the dimensionality cost of computation. This constrain is also known as the “curse of dimensionality”
[2] [3] [4]. These considerations imply that in high dimensional problems, it is necessary to resort to more feasible numerical
methods. Of these, random sampling algorithms, in particular, is also known as Monte Carlo integration (it is a generic name
of algorithms where random numbers are used, coined from the Monte Carlo Casino in Monaco), have proven to be effective
and flexible [5] [6].

The concept of multidimensional integral can be presented in the following form mathematically:

1=Lf®w (1)

is the integral in d-dimensional space, where X = (x4, X5, ... ,X4_1) is a vector in (d — 1) dimensions, f(x) is the function
which we wish to integrate and (1 is the (d — 1)-dimensional domain to be integrated. For multidimensional problems (d >
3), the amount and density of points for classical grid techniques, such as multivariable Riemann sum [7], becomes
tremendously larger. In particular, the evaluation of a d-dimensional space integral with N points per dimension requires
N%~1 evaluations. This scaling problem makes such methods inappropriately efficient when the dimension, d, increases.
Unlike traditional techniques such as the aforementioned Riemann sum, which is a deterministic approach, this random
sampling technique employs a non-deterministic approach, that is, each computational result provides a different outcome
[5].

Furthermore, integrals that appear in realistic problems usually have the additional challenge of featuring irregular domain
or highly oscillatory functions which makes it particularly worse for deterministic methods. Approaches such as Random
sampling methods or Monte Carlo methods based on probability theories easily overcome many of these complications as
they offer improved scalability alongside reduced precision as toughness for problems.

Random sampling technique which is the core algorithm of Monte Carlo integration is based on the law of large numbers,
where it approximates the value of an integral by taking the mean of random samples of the integrand. This method is useful
when the average of the samples taken approaches the value of the integral as the number of samples approached infinity.

Assuming f(X) = f(xq, %3, ... ,X4_41) is defined on a (d — 1)-dimensional domain ) then the estimate for the Monte Carlo
will be:

N
o)
1=W;ﬂw, @

where |Q| is the “area” of the integration domain, N is the random sample size, and {x;}\_, are the uniformly distributed
random points over Q. The error of this estimate is reduced as O(1/v/N) regardless of the dimensionality ¢ which makes
Monte Carlo integration for high-dimensional problems favorable [5] [6].

Random sampling techniques have proven to be very useful and applicable in many areas because of their flexibility and
ease of use. For example, Achilles and Sharma et al. used Monte Carlo to approximate the value  using random sampling
points counting in a simple circle [8] [9]. In engineering and physics, Monte Carlo methods are very popular when it comes
to problems related to quantum mechanics, statistical mechanics, and radiative transfer. For example, there is often the need
to perform integration, which is generally high dimension, in computing path integrals [10] within quantum field theory as
studied by Metropolis et al. [11]. Applications in Finance including complex derivatives, portfolio optimization, and even
risk management usually depend on Monte Carlo methods for computations. In stochastic processes and multivariate
distributions, problems usually involve multidimensional integrals. This phenomenon occurs naturally as studied by
Glasserman [12]. In the field of Bayesian statistics and machine learning practices, Bayesian computation techniques often
require performing integration over high-dimensional posterior distributions. Markov Chain Monte Carlo (MCMC) sampling
and Variational Bayes have been great contributors and tools in machine learning as well as data science, as shown by Andrieu
et al. [13]. When it comes to climate modeling and environmental sciences, computing climate models, especially the
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uncertainty quantification and even the sensitivity analysis, Monte Carlo integration is a well-established technique (see
Saltelli et al. [14]). In statistics, Naimi et al. performed Monte Carlo integration in simulation designs, where they computed
true estimand values of the designs, for a simple and complex one [15].

In this study, high-performance computation is performed, that is, utilizing a graphic processing unit (GPU), which has
thousands of parallel computing cores, enabling a relatively large sample size of the computation is executed at once in
parallel. This gives the advantage of computing the numerical integration in high-dimension to some extent. The purpose of
this research is to find out and demonstrate the capability of the random sampling technique of the high-dimension numerical
integration with the aid of parallel computing device, a GPU, will produce accurate results in a relatively short computation
time. Hence, we formulate the research question as: “Can the random sampling technique of the high-dimensional numerical
integration produces accurate results in a relatively short computation time using a GPU?”

For the sake of simplicity, yet still maintain the not-so-simple function, we choose the d-dimensional sphere as the
function to be the integrand. The main reason of choosing such function is the obvious spherical symmetry, relatively easy
and fast to compute, and including a square root, the relatively often basic function used in most practical computation. In
other word, the function is a representative of computationally “cheap” function.

II. METHODOLOGY

This research methodology consists of three main steps, which are survey, computation, and results. The workflow of the
methodology is shown in Figure 1 below.

* Theory
* Algorithms

* Related works
* Related
applications

« Parallelizations
* High-precision
computing for

accuracy

* Interpretation
* Analysis

Computation

Figure 1. Research methodology workflow

A. Survey
The first step is survey of related computing theory of the technique and its algorithms. Many works related to the
technique including its applications is also studied, to strengthen the understanding and foundations.

B. Computation

The second step is to develop the implementation of the computation model in the high-performance computing
environment, that is, the parallel computation utilizing a relatively fast and powerful GPU. Since the research is aiming to
finding out the capability of the technique, hence it is crucial to maintain the highest numerical precision available during
internal computation, which, in this case will produce relatively high accuracy results.

C. Results

The next and final step is to acquire the computation results, including interpreting and analysis. Interpretation is done by
observing the numerical output of the technique. Analysis is done by comparing the computational results with analytical
values which are readily available. In addition, a performance comparison with another random sampling algorithm, a random
point counting technique is also done.

D. Theoretical Foundation
The random sampling algorithm for multidimensional integration is briefly presented here, including its application to
compute the volume of multidimensional sphere, as a relatively simple case implementation of the algorithm.

o  Random Sampling Integration Technique
The average of a function, denoted as (f (X)) , by definition, is

1
() = fﬂ FOdx, 3)

while computation of (f (x)) can be approximated by
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N
1
(FOO) =~ D F(x0), )
i=1

where N is the number of random samples (sample size) taken and {x;}/_; are the uniformly distributed random points over
Q. Here the approximation is better when N is large enough. Equations (3) and (4) can be equated as

1 1%
). Foodx= OIC
leading to
LIRS
| rooax WL ©

It can be seen that equation (6) is indeed equation (2). Therefore, the basic idea of random sampling integration is to compute
the average value of a function and multiply with the “area” of its domain |Q|.

The numerical integration in d-dimensional space with (d — 1)-dimensional domain () as in equation (1) can be expressed
in the simplest form as

1= ﬂ-f ---ff(xl,xz,... ,Xg_q1) dxydx,dxs - dxg_, (7)
a

which numerical approximation can be computed using equation (6), to become

N
1
[l [ oo o) dridrr g =50 e xa . @
) =1
where {(x, X3, ... , X4_1)i}\=; are the uniformly distributed random points over Q.

o  Volume of d-dimensional Sphere
One of simple cases of multiple integration is volume of a sphere with radius » in d dimensions, V;, can be calculated as:

Vg =29 ﬂ] f \[rz —xF—x% — - —xk_, dx;dx,dxs - dxg_,. 9)

xZ+x2++x3_ <12
The integral is the volume of the sphere in the first “orthant” if its d-dimensional space, thatis, 0 < x; <r,i=1,2,..,d.
A unit sphere in three dimensions is illustrated in Figure 2.

Figure 2. Illustration of a unit sphere in three dimensions.
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Typically, an orthant [16] or hyperoctant [17] in d-dimensional Euclidean space can be viewed as the intersection of d half-
spaces that are mutually orthogonal, analogous to a quadrant in the plane or an octant in three dimensions. The integral is
1/2% part of the volume because of 2¢ spherical symmetry. The domain of integration, €, is the first orthant of its (d — 1)-
dimensional “area” where 0 < x; <r,i =1,2,...,d — 1. A traditional way of computing this integration numerically is by
using multidimensional Riemann sum [7] [18] [19] [20], which, for a sphere, typically has a form of:

V; ~ 24 Z Ax;Ax, -~-Axd_1\/r2 —xf—xf——xi_,. (10)

24024 ax? 2
xZ4xZ 4+ HxG_ <7

For illustration, an integration of over a unit sphere in three dimensions in the first octant is shown in Figure 3, where every
bar illustrates the quantity AxAy./1 — x% — y2.

Y 0.8
1010

Figure 3. Illustration of Riemann sum integration over the first octant of a unit sphere in three dimensions

For comparison, using direct analytical integration technique in spherical coordinates [21] [22] [23] [24] [25], one can derive

the closed formula of volume of d-dimensional sphere with radius r, which has the form as
d/2,.d
ner

74\ 11

r(s+1) (b

For the sake of convenience, the exact and approximate values of the volume of unit spheres, V,;, and its orthant, V, /2%, with
radius r = 1, according to equation (11) are presented in Table 1. Notice that I'(...) in equation (11) is the gamma function.

Surprisingly, as d increases, the value of V; increases up to the maximum value when d = 5, and after that, V/; diminish rapidly,
as shown in Figure 4.

Vd=

TABLE 1
UNIT SPHERE VOLUMES, V), AND V,/2” | IN D DIMENSIONS, WITH THEIR MACHINE DOUBLE PRECISION APPROXIMATE VALUES

Dlme;smn, Vg4 Approximate Vg4 Vq/2¢ Approximate V4 /24
T
2 i 3.14159265358979 1 0.785398163397448
41 n
3 3 4.18879020478639 3 0.523598775598299
2 2
4 - 4.93480220054468 EV 0.308425137534042
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Dimension,

p Vg Approximate V4 Vy/24 Approximate Vy/2¢
8m? w?
5 on 5.26378901391432 T 0.164493406684822
15 60
s s
6 T 5.16771278004997 L 0.0807455121882808
6 384
161 s
7 o 4.72476597033140 L 0.036912234143214
105 840
m* t
8 T 4.05871212641677 0.0158543442438155
24 6144
32m* mt
9 3.29850890273871 0.00644240020066154
945 15120
5 5
10 R 2.55016403987735 T 0.00249039457019272
120 122880
641° ™ _a
11 1.88410387938990 9.19972597358350 x 10
10395 332640
6 6
12 T 1.33526276885459 L 3.25991886927390 x 10~*
720 2949120
128m® i 4
13 0.910628754783283 _T 1.11160736667881 x 10
135135 8648640
7 7
14 T 0.599264529320792 _r 3.65762041821773 x 105
5040 82575360
25617 w7 s
15 _ooom 0.381443280823304 T 1.16407251227815 x 10
2027025 259459200
8 8
16 T 0.235330630358893 - 3.59086044859151 x 10~°
40320 2642411520
512m8 w8 6
17 _2em 0.140981106917139 T 1.07560048612319 x 10
34459425 8821612800
9 9
18 T 0.0821458866111282 T 3.13361689037812 x 107
362880 95126814720
1024m° ° _g
19 e 0.0466216010300885 T 8.89236469842692 x 10
654729075 335221286400
10 10
20 _r 0.025806891390014 "~ 2.46113695049420 x 108
3628800 3805072588800
204810 10 9
21 _corem 0.013949150409021 T 6.65147324038553 x 10
13749310575 14079294028800
11 11
22 T 0.00737043094571435 i 1.75724767344340 x 10~°
39916800 167423193907200
4096mt! 1l —10
23 __2vem 0.00381065638685212 4.54265640598789 x 10
316234143225 647647525324800
12 12
24 T 0.00192957430940392 T 1.15011591279741 x 10~1°
479001600 8036313307545600
8192712 4 w12 11
25 __ 9774 9.57722408823173 x 10 2.85423519856683 x 10
7905853580625 32382376266240000
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6

®
0 .‘O- oo —-0—o

0 5 10 15 20 25
Dimension, d

Figure 4. Volume of a unit sphere, ¥, in d dimensions

E. Computation Model

Our implementation of the computation model is simply computing the unit sphere volume of the part where all
coordinates are positive, that is, the first “orthant” only, where 0 < x; < 1,i = 1,2, ... ,d, which is V, = V,;/2%. The exact
and approximate values of V; /2%, in machine double precision, are also presented in Table 1. The values of V;/2¢ diminish
rapidly as d increases (see Figure 5).

0.8 -

0.7

0 5 10 15 20 25
Dimension, d

Figure 5. Volume of an orthant of a unit sphere, /2, in d dimensions

As indicator of computation accuracy, we compute (or extract) the approximate value of z. The reason behind this is that z
is known as a universal constant, which, despite it is an irrational number, its approximate value is well known very accurate
to many (even billions and trillions) significant figures [26] [27] [28].

Computation of 7 from V, = V;/2% is done using equation (11), m = (Vd ra+dy/ 2))2/d, and values from Table 1 for
various value of d. Instead of using the matching decimal digits of 7, we use the metric of the accuracy of computed value of
7, which is calculated as

G =1-1, (12)

where A = ft — m is the difference of computed 7 and the “actual” 7, that is, a value of machine double precision 7 =
3.14159265358979, which is used here.
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o Volume Approximation by Random Sampling of the Unit Sphere Function
Computation of the volume of the unit sphere’s first orthant, V, = V,/2% is performed by using the integral in equation
(9) where numerically approximated using random sampling in equation (8), as follow:

N
Vo = fff f Jl —X{—=x5 — = x4y dxydxydxz e dxg_q = |1%_|Z f(Cxy, %0 0 , Xg-1)0) (13)
xZ+x2+tx3_ <1 i=1
where the function f'in the right-hand side is averaged over the domain “area”, Q = (1 — 0)4~! = 1. The function f* itself
has the form of:

22 . N2 2 2 vee 2
FQ0 Xy e s Xay) = \/1 XX ¥ar,  Xtxpteedxgg sl (14)

0, elsewhere
A random sample of size N of function (14) is picked, and averaged, as in the equation (13), leading to the computed value
of V,. The situation of sampling of the function in three dimensions is illustrated in Figure 6.

- sampled function
® XY-Plane Point
® Sphere Surface Point
[ 1.0

- 0.8
- 0.6
- 0.4
F 0.2

- 0.0
1.0

0.8

s 0.2
0.8
1.0 0.0

Figure 6. Illustration of random sampling of the first octant of a unit sphere function in three dimensions

Implementation of the random sampling of the function of a unit sphere in 7 dimensions is presented in Code 1, where the
assignment of all coordinate variables was done directly without a loop, to prevent the introduction of index and array
variables, in order to optimize the code to gain best execution performance possible.

1. // Computation loop
82.  for (int i = @; i < ITERATIONS; i++) {

3. double x1 = curand_uniform(&rng); // Random x position in [e@,1]
4. double x2 = curand_uniform(&rng); // Random x position in [e@,1]
es. double x3 = curand_uniform(&rng); // Random x position in [@,1]
06. double x4 = curand_uniform(&rng); // Random x position in [e,1]
7. double x5 = curand_uniform(&rng); // Random x position in [@,1]
98. double x6 = curand_uniform(&rng); // Random x position in [e,1]
9. S2=X1*X1+X2*X2+X3*X3+X4*X4+X5*X5+X6*X6;

10. if (s2 < 1.0) ssum[threadIdx.x] += sqrt(1.e - s2);

11. | }

Code 1. Random sampling of the function of a unit sphere’s first orthant in 7 dimensions in CUDA C/C++
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o Volume Approximation by Random Point Sampling in the Unit Sphere

For comparison, computation of the volume of the unit sphere’s first orthant, V, = V,/2% is also performed by using
random point sampling in the unit sphere. This method has been studied for simpler cases, for example, like in a two-
dimensional circle [8] [9]. The algorithm woks by simply counting the number of random points inside the unit sphere’s first

orthant, divided by total number of random points generated in the d-dimensional unit cube of that particular orthant, that is:

ng
V, = N (15)

For this computation, the greater the sample size N, the better, particularly when in higher dimension, as d increases. The
random point sampling is illustrated in Figure 7. Implementation of the random point sampling inside the unit sphere’s first
orthant is presented in Code 2, where the assignment of all coordinate variables was done directly without a loop, to prevent
the introduction of index and array variables, in order to optimize the code to gain best execution performance possible.

@ Inside Sphere
@ Outside Sphere

1.0 0.0

Figure 7. Illustration of random point sampling in a unit sphere’s first orthant in three dimensions

e1. // Computation loop

02. for (int i = @; i < ITERATIONS; i++) {

03. double x1 = curand_uniform(&rng); // Random x position in [@,1]
4. double x2 = curand_uniform(&rng); // Random x position in [@,1]
e5. double x3 = curand_uniform(&rng); // Random x position in [@,1]
06. double x4 = curand_uniform(&rng); // Random x position in [@,1]
e7. double x5 = curand_uniform(&rng); // Random x position in [@,1]
08. double x6 = curand_uniform(&rng); // Random x position in [@,1]
09. double x7 = curand_uniform(&rng); // Random x position in [@,1]
10. if (XLEXL4X2*¥X2+X3*¥X3+XA*XA+X5FX5+X6*X6+X7*X7 < 1.0)

11. counter[threadIdx.x]++;

12, }

Code 2. Random point sampling in a unit sphere’s first orthant in 7 dimensions in CUDA C/C++

e Hardware

The computation was performed on a relatively fast hardware with CPU AMD Ryzen 9 5900X running at 4.8 GHz, 12
cores, 24 threads, equipped with 64 GB of DDR4 RAM and a GPGPU NVIDIA RTX3080Ti with 10240 computing cores,
and 12 GB of GDDRS5 VRAM. The computation code was developed in CUDA C/C++ and compiled in a Linux environment.
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III. RESULTS AND DISCUSSION

The computation is performed for 2, 3, 7, 15, and 24 dimensions. The reason behind this is that we want to perform the
computation of a relatively high-dimensional calculations. Above 24 dimensions, starting d = 25 and more, the results were
inaccurate due to data type limitation of the GPU capabilities, that is, the GPU’s double precision data type is not enough to
accurately calculate the result. Dimensions d = 2 and 3 were chosen simply because they are everyday geometry which can
be checked in ease. While dimensions d = 7 and 15 were chosen because 7 and 15 are close to 8 and 16, respectively, which
spans evenly between 1 and 24. Another reason dimension d = 7 and 15 were chosen because they are odd numbers, hence
there are three odd dimensions (3, 7, 15) and two even dimensions (2, 24). In these computations, all of the accuracies, a,, of
the computed value of = were calculated according to equation (12).

A. Random Sampling Integration

For these computations, random sample size, N = 3.2768 X 10! is chosen. This number is from 32 warp size x 10240
computing core x 1000000 iterations. The computations were performed 128 times, and the results were averaged.
The computation results which are approximate values of z, and their accuracies, are presented in Figure 8a and Figure 8b,
respectively. Execution time of every computation is shown in Figure 9a, where it increases in a linear trend as seen in Figure
9b. Error bars on those figures are margin errors calculated from those 128 computation batches.

(a) 32 (b)
0.9999996 0.9999991 0.9999689 0.9997822 0.9917814
1
3.18
& 0.8
&
o
8316 o
2 Q
g g 0.6
= Q
2314 b
= 3.
o
: -] 04
© 3.14159243738828 3.14149491450184 3.16457071238398
3.12
J 3.14159242840961 . 3.14227674739719 l 02
[ ] )
2 3 7 15 24 2 3 7 15 24
Dimension, d Dimension, d

Figure 8. (a) Computed value of 7, displayed in full machine double precision, averaged from batches. Please notice that the vertical axis is zoomed (3.1 to
3.2) to emphasize the small variations of the results. (b) Accuracy of the computed value of 7, averaged from batches.

70 70
(a) (b)
60 57.6943 60 .
2 - t=1.846433756 d + 11.826393984 -~
50 750 ?=0973365175  _-°
o iy _-
£ 40 35.6497 £ 40 —T
[= [= PR
) o -
£ 30 27.7172 £ 30 L
= 2 e
£ 50 18.7100 £ 50 L7
S 13.5287 S 9
°
10 J 10
0 0
2 3 7 15 24 0 5 10 15 20 25
Dimension, d Dimension, d

Figure 9. (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and number of dimensions.
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B. Random Sampling Point Counting

For these computations, random sample size, N = 3.2768 x 10! is chosen. This number is from 32 warp size x 10240
computing core x 1000000 iterations. The computations were performed 128 times, and the results were averaged.
The computation results which are approximate values of z, and their accuracies, are presented in Figure 10a and Figure 10D,
respectively. Execution time of every computation is shown in Figure 11a, where it increases in a linear trend as seen in
Figure 11b. Error bars on those figures are margin errors calculated from those 128 computation batches.
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Figure 10. (a) Computed value of 7, displayed in full machine double precision, averaged from batches. Please notice that the vertical axis is zoomed (3.1
to 3.2) to emphasize the small variations of the results. (b) Accuracy of the computed value of 7, averaged from batches.
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Figure 11. (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and number of dimensions.
C. Random Sampling Integration in 24-dimensional Space Using Various Sample Sizes.

Here the results of random sampling integration computation are presented using various sample sizes, from N =
3.2768 x 10° up to N = 3.2768 x 103,
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Figure 12 (a) Computed value of 7, displayed in full machine double precision, averaged from batches. (b) Accuracy of the computed value of z, averaged
from batches.
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Figure 13 (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and sample size. Please notice that
both axes use logarithmic scales.

D. Random Sampling Point Counting in 24-dimensional Space Using Various Sample Sizes.
Here the results of random sampling point counting computation are presented using various sample sizes, from N =
3.2768 x 10° up to N = 3.2768 x 103,
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Figure 14 (a) Computed value of 7, displayed in full machine double precision, averaged from batches. (b) Accuracy of the computed value of w, averaged
from batches.
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Figure 15 (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and sample size. Please notice that
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E. Random Sampling Integration and Point Counting in 24-dimensional Space using CPU
For comparison, a single threaded CPU computation of = was also performed, in 24 dimensions, using sample size N =

3.2768 x 101°. The computations were performed in 128 batches, and the results were averaged. The results are displayed
in Figure 16, where the random sampling integration method outperform the point counting method, that is, more accurate,
slightly faster, and more stable (notice the much smaller error bars on random sampling compared to point counting method).

Error bars on those figures are margin errors calculated from those 128 computation batches.

35

@) ®) 1090
a 0.9791865 C
, 1 0.9431208 9000
8000
9774.01
55 " 08 Zoon0 | 2260
3.12148425599010 -

S

3.02836083102624 0.6

(2]
£
< 5000
.2
: £ 4000
0.4 =
23000
02 S 2000
' 1000
0 0 0

24D Integration 24D Point Counting
Algorithm

Accuracy

Computed value of
W

—_

(=]
W

24D Integration 24D Point Counting 24D Integration 24D Point Counting

Algorithm Algorithm

Figure 16. Computation of 7 using single threaded CPU: (a) Computed value of @, (b) accuracy, and (c) computation time.

F. General Discussion and Analysis

Here we examine what these results indicate for high-dimensional integration by random sampling in a GPU context. The
objective was to determine whether this method functioned effectively when faced with the challenge of computing the
volume of a unit sphere in d-dimensional space, extending up to 24 dimensions. The results were indeed quite revealing.

Initially, we would like to examine the accuracy of the results. Through the diverse dimensions explored, from the
conventional two and three dimensions to the expansive seven, 15, or 24 dimensions, the random sampling method proved
highly effective in estimating the volume within a sphere. These are spherical volumes, thereby serving as an effective
standard. Previously, in the lower-dimensional realms of 2 or 3, we achieved a highly precise estimate of 7. The calculated
value corresponded with the analytically derived result to exceed double precision machine limits. Subsequently,
circumstances began to deteriorate slightly. In 7 dimensions, the mean z from all our measurements approximated 3.14159
with little variations. However, up to 15 dimensions, the results grew progressively dispersed. The selected accuracy
parameter, specifically the relative error formula, demonstrated a decline, from approximately 107" in lower dimensions to
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roughly 107'° or worse in 24 dimensions. As the dimensions expand, the volume of the orthant diminishes by several orders
of magnitude. Essentially, this indicates that the computation requires far more samples to achieve equivalent precision, as
elucidated by Monte Carlo theory.

The potential of the GPU is evident in this instance, achieving up to billions of points in certain runs, indicating a significant
advancement. The durations observed were notably brief, frequently less than one second for low dimensions, and generally
increased linearly with both dimension d and sample size N. Figure 9b and Figure 11b illustrate linear relationship between
computation time and dimensions, with correlation 72 close to 1, indicating that GPU parallelization effectively manages the
additional coordinates, not to mention obvious linear relationship between computation time and sample size (Figure 13b and
Figure 15b), also with correlation 72 close to 1. The addition of each dimension results in an extra operations within the kernel;
however, due to the parallel operation of the cores, the computational load is lessened compared to that on a CPU as the
baseline (see Figure 16). We observed time intervals increase from milliseconds in two dimensions to several seconds in 24
dimensions for the same sample size.

Trade-offs were apparent in the comparison between random sampling integration and the point counting method. The
concept of point counting is more straightforward than the sampling integration distribution; it exemplifies a Monte Carlo
hit-or-miss method, as indicated by its name. In our experiments, point-counting yielded satisfactory results at lower
dimensions; however, its precision was somewhat inferior to that of random sampling integration at higher dimensions. In a
24-dimensional space, for example, the point counting method yielded z estimates that exhibited less accuracy, particularly
when sample size is relatively small, as we can compare Figure 12b versus Figure 14b. The rationale behind this is the
following: Point counting is a binary process; it merely assesses whether the sum of squares is less than 1. This method is
computationally efficient but slightly less accurate to represent the function's shape compared to the averaging of the square
root in the random sampling approach.

Those samples integrate the actual height function /1 —x?—x% —---—x2Z_, , it was much better fitted to the
approximation. But on the whole, point counting was slightly slower in execution time. This is because although it didn't
have to do a square root operation, which is computationally more expensive on a GPU (also on CPU), it needs to pick
random samples on d dimensions, while random sampling integration picks samples on (d — 1) dimensions (its hyperplane
domain). But it didn't make much difference, as we're talking fractions of a second per single sample calculation here, so for
most practical purposes where accuracy is better achieved by random sampling integration than point counting.

In a Monte Carlo simulation, one would expect the error to go down like 1/v/N as it fits our results quite well. For the 24
dimensions case with varying sample size N (see Figure 12 and Figure 13), as N increases, the computed 7 stabilized closer
to the true value, and the accuracy improved. But as dimension d increases to 25, because of double-precision floating-point
limits, one can't squeeze more digits out without higher precision arithmetic. That's why the computation hit a wall at 25
dimensions, that is, the volumes V, = V, /2% get so small, in the order of 10~!", hence the sample size must be much greater
than 10", and the = = (32382376266240000 V,)*/*? computation (see Table 1) by the GPU's double precision just can't
represent it accurately. It's a hardware limitation, not a flaw in the method.

G. Computation using GPU and CPU comparison

On a single-threaded computation using CPU (AMD Ryzen 9 5900X), the same code of both random sampling integration
and point counting algorithms took much longer, even several order of magnitude longer for the same large sample size, as
compared to parallel computation using GPU, as shown on Figure 13a, Figure 15a, and Figure 16¢c. Therefore, this method
is most suited to large problems with massive parallelism. Again, as explained above, here the random sampling integration
method outperformed the point counting method by a small amount (see Figure 16).

H. Random Sampling Integration Method Consideration versus Traditional Riemann Sum Integration

As we mentioned earlier in the introduction, for multidimensional integration, random sampling integration method is
more suitable than traditional Riemann sum integration, as for d-dimensional space, random sampling integration with sample
size Ns has complexity of O((d — 1)Ng), compare to O((d — 1)N&™1) for traditional Riemann sum integration with Np
sampling points on each dimension. Therefore, asymptotically for larger dimensions, the former method is still feasible
whereas the latter grows exponentially with dimension, d, making it not feasible. Here is the limit of their complexity ratio:

d-1Ns _ . Ns
@ DONET T a g (16)

Equation (16) shows that the limit approaches zero as d approaches infinity, showing the superiority of the random sampling
integration technique.
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IV. CONCLUSION

We have shown that using random sampling in conjunction with high-performance computing using GPU is particularly
attractive when dealing with those problematic multidimensional integrals which traditional methods find not feasible. By
taking the example of volumes of spheres in different dimensions as our test case for this random sampling integration method,
we found that it produces results of high accuracy at least up to dimension 24, with computation times within reason for
parallel processing compared to longer computation time on the CPU as baseline (see Figure 16). This is the definitive answer
to our research question. It might be interesting to look beyond 24 dimensions in the future or modify the sampling for even
more complex functions, but for now one thing is clear: combining randomness with the power of high-performance hardware
can fundamentally tackle multidimensional numerical integration problems.

On a larger scale random sampling integration on GPU’s results suggest that they're powerful tools to solve high-
dimensional problems which simple deterministic methods like Riemann sums couldn't ever reach. As the sphere example
demonstrates, with the symmetry and computability like this, it only represents a certain type of integral in physics or statistics:
those where there are radial dependencies and constraints. In quantum path integrals, for example, one is often integrating
high-dimensional configuration spaces [10] [29] [30]. Similarly, in finance pricing options with many variables may benefit
greatly from its precision at broad scales [12]. Of course, there are caveats. Random number generation by GPU isn't perfect:
we used the pseudorandom number generator CURAND for our work, plus in very high dimensions correlations may crop
up if proper seeding isn't done. We ameliorated those by using timer as random number seeds, and performed multiple batches
and averaging them together. Also, there is the power drain, that is, GPUs consumes high electricity energy, so for these
large jobs that's one factor. And though we did well up to 24 dimensions, actual integrals may have odd domains or functions
which oscillate heavily. Techniques for variance reduction, such as importance sampling, could be added on top to solve this
problem.
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