
Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

486

High-Performance Numerical Computation of

Multidimensional Integral using Random Sampling

http://dx.doi.org/10.28932/jutisi.v11i3.12999

Riwayat Artikel

Received: 10 Agustus 2025 | Final Revision: 22 November 2025 | Accepted: 22 November 2025

Creative Commons License 4.0 (CC BY – NC)

Andreas Widjaja #1, Tjatur Kandaga Gautama#2, Sendy Ferdian Sujadi#3, Bernadus Indra Wijaya#4

Faculty of Smart Technology and Engineering, Universitas Kristen Maranatha

Jalan Surya Sumantri No. 65, Bandung, Jawa Barat 40164
1andreas.widjaja@it.maranatha.edu

2tjatur.kandaga@it.maranatha.edu

3sendy.fs@it.maranatha.edu

42072003@maranatha.ac.id

Corresponding author: andreas.widjaja@it.maranatha.edu

Abstract — This study examines the use of high-performance computing to carry out multidimensional integral calculation based on

stochastic techniques, particularly in the context of random sampling integration, also known as Monte Carlo integration. Considering

that traditional methods are facing extreme difficulty especially in high-dimension when encountered with "dimensionality curse",

random sampling technique to estimate integral values is used. This technique is superior in many aspects, for example in terms of

scalability and flexibility, even in complex and irregular domains. In particular, the work concentrates on the case of calculating the

volume of a multidimensional sphere using random sampling integration technique which introduces a framework that employs the

Graphics Processing Unit (GPU) to carry out these computations more effectively. Using dimensionalities from 2 to 24, the study

compares both accuracy and computation time of the method. The results show that the random sampling integration method attains

high accuracy in the computation of π which is used as a benchmark. The computational model is implemented in CUDA C/C++, taking

advantage of GPU parallelism to process large sample sizes, in which the computations are performed efficiently. It is demonstrated in

general that random sampling integration is a viable approach to high-dimensional problems when combined with rapid GPU

parallelization.

Keywords— Monte Carlo integration; Multidimensional integral; parallel computing; random sampling; stochastic.

Komputasi Numerik Berkinerja Tinggi dari

Integral Multidimensi Menggunakan Sampel Acak

Abstrak — Penelitian ini mengkaji penggunaan komputasi berkinerja tinggi untuk melakukan perhitungan integral multidimensi

berdasarkan teknik stokastik, khususnya dalam konteks integrasi sampling acak, yang juga dikenal sebagai integrasi Monte Carlo.

Mengingat metode tradisional menghadapi kesulitan ekstrem terutama pada dimensi tinggi ketika dihadapkan pada

“dimensionality curse”, teknik sampling acak digunakan untuk mengaproksimasi nilai integral. Teknik ini unggul dalam banyak

aspek, misalnya dalam hal skalabilitas dan fleksibilitas, bahkan pada domain yang kompleks dan tidak teratur. Secara khusus,

penelitian ini berfokus pada kasus perhitungan volume bola multidimensi menggunakan teknik integrasi sampling acak, yang

memperkenalkan kerangka kerja yang memanfaatkan unit pemrosesan grafis (GPU) untuk melakukan perhitungan ini secara

lebih efektif. Dengan dimensi dari 2 hingga 24, penelitian ini membandingkan akurasi dan waktu komputasi metode tersebut.

Hasil menunjukkan bahwa metode integrasi sampling acak mencapai akurasi tinggi dalam perhitungan π yang digunakan sebagai

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

487

acuan. Model komputasi diimplementasikan dalam CUDA C/C++, memanfaatkan paralelisme GPU untuk memproses ukuran

sampel besar, di mana perhitungan dilakukan secara efisien. Secara umum, terbukti bahwa integrasi sampling acak merupakan

pendekatan yang layak untuk masalah multidimensi ketika dikombinasikan dengan paralelisasi GPU yang cepat.

Kata kunci— Integral multidimensi; integrasi Monte Carlo; komputasi paralel; sampling acak, stokastik.

I. INTRODUCTION

Numerical integration is one of the most versatile and important techniques employed in scientific computation. It allows

the user to compute definite integrals for functions that would otherwise be difficult to analyze. For example, when single or

multidimensional integrals are involved, many traditional deterministic integration techniques like Gaussian quadrature or

even trapezoidal and Simpson’s rules [1] perform quite inefficiently. These traditional methods are numerically “hard” due

to the exponentiation of the dimensionality cost of computation. This constrain is also known as the “curse of dimensionality”

[2] [3] [4]. These considerations imply that in high dimensional problems, it is necessary to resort to more feasible numerical

methods. Of these, random sampling algorithms, in particular, is also known as Monte Carlo integration (it is a generic name

of algorithms where random numbers are used, coined from the Monte Carlo Casino in Monaco), have proven to be effective

and flexible [5] [6].

The concept of multidimensional integral can be presented in the following form mathematically:

𝐼 = ∫ 𝑓(𝐱)𝑑𝐱
Ω

 (1)

is the integral in d-dimensional space, where 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑑−1) is a vector in (d – 1) dimensions, 𝑓(𝐱) is the function

which we wish to integrate and Ω is the (𝑑 − 1)-dimensional domain to be integrated. For multidimensional problems (d >

3), the amount and density of points for classical grid techniques, such as multivariable Riemann sum [7], becomes

tremendously larger. In particular, the evaluation of a d-dimensional space integral with N points per dimension requires

𝑁𝑑−1 evaluations. This scaling problem makes such methods inappropriately efficient when the dimension, d, increases.

Unlike traditional techniques such as the aforementioned Riemann sum, which is a deterministic approach, this random

sampling technique employs a non-deterministic approach, that is, each computational result provides a different outcome

[5].

Furthermore, integrals that appear in realistic problems usually have the additional challenge of featuring irregular domain

or highly oscillatory functions which makes it particularly worse for deterministic methods. Approaches such as Random

sampling methods or Monte Carlo methods based on probability theories easily overcome many of these complications as

they offer improved scalability alongside reduced precision as toughness for problems.

Random sampling technique which is the core algorithm of Monte Carlo integration is based on the law of large numbers,

where it approximates the value of an integral by taking the mean of random samples of the integrand. This method is useful

when the average of the samples taken approaches the value of the integral as the number of samples approached infinity.

Assuming 𝑓(𝐱) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑−1) is defined on a (d – 1)-dimensional domain Ω then the estimate for the Monte Carlo

will be:

𝐼 =
|Ω|

𝑁
∑ 𝑓(𝐱𝑖)

𝑁

𝑖=1

, (2)

where |Ω| is the “area” of the integration domain, N is the random sample size, and {𝐱𝑖}𝑖=1
𝑁 are the uniformly distributed

random points over Ω. The error of this estimate is reduced as O(1/√𝑁) regardless of the dimensionality d which makes

Monte Carlo integration for high-dimensional problems favorable [5] [6].

Random sampling techniques have proven to be very useful and applicable in many areas because of their flexibility and

ease of use. For example, Achilles and Sharma et al. used Monte Carlo to approximate the value π using random sampling

points counting in a simple circle [8] [9]. In engineering and physics, Monte Carlo methods are very popular when it comes

to problems related to quantum mechanics, statistical mechanics, and radiative transfer. For example, there is often the need

to perform integration, which is generally high dimension, in computing path integrals [10] within quantum field theory as

studied by Metropolis et al. [11]. Applications in Finance including complex derivatives, portfolio optimization, and even

risk management usually depend on Monte Carlo methods for computations. In stochastic processes and multivariate

distributions, problems usually involve multidimensional integrals. This phenomenon occurs naturally as studied by

Glasserman [12]. In the field of Bayesian statistics and machine learning practices, Bayesian computation techniques often

require performing integration over high-dimensional posterior distributions. Markov Chain Monte Carlo (MCMC) sampling

and Variational Bayes have been great contributors and tools in machine learning as well as data science, as shown by Andrieu

et al. [13]. When it comes to climate modeling and environmental sciences, computing climate models, especially the

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

488

uncertainty quantification and even the sensitivity analysis, Monte Carlo integration is a well-established technique (see

Saltelli et al. [14]). In statistics, Naimi et al. performed Monte Carlo integration in simulation designs, where they computed

true estimand values of the designs, for a simple and complex one [15].

In this study, high-performance computation is performed, that is, utilizing a graphic processing unit (GPU), which has

thousands of parallel computing cores, enabling a relatively large sample size of the computation is executed at once in

parallel. This gives the advantage of computing the numerical integration in high-dimension to some extent. The purpose of

this research is to find out and demonstrate the capability of the random sampling technique of the high-dimension numerical

integration with the aid of parallel computing device, a GPU, will produce accurate results in a relatively short computation

time. Hence, we formulate the research question as: “Can the random sampling technique of the high-dimensional numerical

integration produces accurate results in a relatively short computation time using a GPU?”

For the sake of simplicity, yet still maintain the not-so-simple function, we choose the d-dimensional sphere as the

function to be the integrand. The main reason of choosing such function is the obvious spherical symmetry, relatively easy

and fast to compute, and including a square root, the relatively often basic function used in most practical computation. In

other word, the function is a representative of computationally “cheap” function.

II. METHODOLOGY

This research methodology consists of three main steps, which are survey, computation, and results. The workflow of the

methodology is shown in Figure 1 below.

Figure 1. Research methodology workflow

A. Survey

The first step is survey of related computing theory of the technique and its algorithms. Many works related to the

technique including its applications is also studied, to strengthen the understanding and foundations.

B. Computation

The second step is to develop the implementation of the computation model in the high-performance computing

environment, that is, the parallel computation utilizing a relatively fast and powerful GPU. Since the research is aiming to

finding out the capability of the technique, hence it is crucial to maintain the highest numerical precision available during

internal computation, which, in this case will produce relatively high accuracy results.

C. Results

The next and final step is to acquire the computation results, including interpreting and analysis. Interpretation is done by

observing the numerical output of the technique. Analysis is done by comparing the computational results with analytical

values which are readily available. In addition, a performance comparison with another random sampling algorithm, a random

point counting technique is also done.

D. Theoretical Foundation

The random sampling algorithm for multidimensional integration is briefly presented here, including its application to

compute the volume of multidimensional sphere, as a relatively simple case implementation of the algorithm.

• Random Sampling Integration Technique

The average of a function, denoted as 〈𝑓(𝐱)〉 , by definition, is

〈𝑓(𝐱)〉 =
1

|Ω|
∫ 𝑓(𝐱)𝑑𝐱 ,

Ω

 (3)

while computation of 〈𝑓(𝐱)〉 can be approximated by

• Theory

• Algorithms

• Related works

• Related
applications

Survey

• Parallelizations

• High-precision
computing for
accuracy

Computation
• Interpretation

• Analysis
Results

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

489

〈𝑓(𝐱)〉 ≈
1

𝑁
∑ 𝑓(𝐱𝑖)

𝑁

𝑖=1

, (4)

where N is the number of random samples (sample size) taken and {𝐱𝑖}𝑖=1
𝑁 are the uniformly distributed random points over

Ω. Here the approximation is better when N is large enough. Equations (3) and (4) can be equated as

1

|Ω|
∫ 𝑓(𝐱)𝑑𝐱

Ω

≈
1

𝑁
∑ 𝑓(𝐱𝑖)

𝑁

𝑖=1

, (5)

leading to

∫ 𝑓(𝐱)𝑑𝐱
Ω

≈
|Ω|

𝑁
∑ 𝑓(𝐱𝑖)

𝑁

𝑖=1

. (6)

It can be seen that equation (6) is indeed equation (2). Therefore, the basic idea of random sampling integration is to compute

the average value of a function and multiply with the “area” of its domain |Ω|.
The numerical integration in d-dimensional space with (d – 1)-dimensional domain Ω as in equation (1) can be expressed

in the simplest form as

𝐼 = ∭ ⋯

Ω

∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑−1) 𝑑𝑥1𝑑𝑥2𝑑𝑥3 ⋯ 𝑑𝑥𝑑−1 (7)

which numerical approximation can be computed using equation (6), to become

∭ ⋯

Ω

∫ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑−1) 𝑑𝑥1𝑑𝑥2𝑑𝑥3 ⋯ 𝑑𝑥𝑑 ≈
|Ω|

𝑁
∑ 𝑓((𝑥1, 𝑥2, … , 𝑥𝑑−1)𝑖)

𝑁

𝑖=1

. (8)

where {(𝑥1, 𝑥2, … , 𝑥𝑑−1)𝑖}𝑖=1
𝑁 are the uniformly distributed random points over Ω.

• Volume of d-dimensional Sphere

One of simple cases of multiple integration is volume of a sphere with radius r in d dimensions, 𝑉𝑑, can be calculated as:

𝑉𝑑 = 2𝑑 ∭ ∫ √𝑟2 − 𝑥1
2−𝑥2

2 − ⋯ − 𝑥𝑑−1
2 𝑑𝑥1𝑑𝑥2𝑑𝑥3 ⋯ 𝑑𝑥𝑑−1

𝑥1
2+𝑥2

2+⋯+𝑥𝑑−1
2 ≤ 𝑟2

. (9)

The integral is the volume of the sphere in the first “orthant” if its d-dimensional space, that is, 0 ≤ 𝑥𝑖 ≤ 𝑟, 𝑖 = 1, 2, … , 𝑑.

A unit sphere in three dimensions is illustrated in Figure 2.

Figure 2. Illustration of a unit sphere in three dimensions.

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

490

Typically, an orthant [16] or hyperoctant [17] in d-dimensional Euclidean space can be viewed as the intersection of d half-

spaces that are mutually orthogonal, analogous to a quadrant in the plane or an octant in three dimensions. The integral is

1/2𝑑 part of the volume because of 2𝑑 spherical symmetry. The domain of integration, Ω, is the first orthant of its (𝑑 − 1)-

dimensional “area” where 0 ≤ 𝑥𝑖 ≤ 𝑟, 𝑖 = 1, 2, … , 𝑑 − 1. A traditional way of computing this integration numerically is by

using multidimensional Riemann sum [7] [18] [19] [20], which, for a sphere, typically has a form of:

𝑉𝑑 ≈ 2𝑑 ∑ Δ𝑥1Δ𝑥2 ⋯ Δ𝑥𝑑−1√𝑟2 − 𝑥1
2−𝑥2

2 − ⋯ − 𝑥𝑑−1
2

𝑥1
2+𝑥2

2+⋯+𝑥𝑑−1
2 ≤ 𝑟2

. (10)

For illustration, an integration of over a unit sphere in three dimensions in the first octant is shown in Figure 3, where every

bar illustrates the quantity Δ𝑥Δ𝑦√1 − 𝑥2 − 𝑦2.

Figure 3. Illustration of Riemann sum integration over the first octant of a unit sphere in three dimensions

For comparison, using direct analytical integration technique in spherical coordinates [21] [22] [23] [24] [25], one can derive

the closed formula of volume of d-dimensional sphere with radius r, which has the form as

𝑉𝑑 =
𝜋𝑑/2𝑟𝑑

Γ (
𝑑

2
+ 1)

 . (11)

For the sake of convenience, the exact and approximate values of the volume of unit spheres, 𝑉𝑑, and its orthant, 𝑉𝑑/2𝑑, with

radius r = 1, according to equation (11) are presented in Table 1. Notice that Γ(…) in equation (11) is the gamma function.

Surprisingly, as d increases, the value of 𝑉𝑑 increases up to the maximum value when d = 5, and after that, 𝑉𝑑 diminish rapidly,

as shown in Figure 4.

TABLE 1

UNIT SPHERE VOLUMES, VD, AND VD/2
D
 , IN D DIMENSIONS, WITH THEIR MACHINE DOUBLE PRECISION APPROXIMATE VALUES

Dimension,

d
𝑽𝒅 Approximate 𝑽𝒅 𝑽𝒅/𝟐𝒅 Approximate 𝑽𝒅/𝟐𝒅

2 𝛑 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟓𝟑𝟓𝟖𝟗𝟕𝟗
𝛑

𝟒
 𝟎. 𝟕𝟖𝟓𝟑𝟗𝟖𝟏𝟔𝟑𝟑𝟗𝟕𝟒𝟒𝟖

3
4π

3
 4.18879020478639

π

6
 0.523598775598299

4
π2

2
 4.93480220054468

π2

32
 0.308425137534042

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

491

Dimension,

d
𝑽𝒅 Approximate 𝑽𝒅 𝑽𝒅/𝟐𝒅 Approximate 𝑽𝒅/𝟐𝒅

5
8π2

15
 5.26378901391432

π2

60
 0.164493406684822

6
π3

6
 5.16771278004997

π3

384
 0.0807455121882808

7
16π3

105
 4.72476597033140

π3

840
 0.036912234143214

8
π4

24
 4.05871212641677

π4

6144
 0.0158543442438155

9
32π4

945
 3.29850890273871

π4

15120
 0.00644240020066154

10
π5

120
 2.55016403987735

π5

122880
 0.00249039457019272

11
64π5

10395
 1.88410387938990

π5

332640
 9.19972597358350 × 10−4

12
π6

720
 1.33526276885459

π6

2949120
 3.25991886927390 × 10−4

13
128π6

135135
 0.910628754783283

𝜋6

8648640
 1.11160736667881 × 10−4

14
π7

5040
 0.599264529320792

𝜋7

82575360
 3.65762041821773 × 10−5

15
256π7

2027025
 0.381443280823304

𝜋7

259459200
 1.16407251227815 × 10−5

16
π8

40320
 0.235330630358893

𝜋8

2642411520
 3.59086044859151 × 10−6

17
512π8

34459425
 0.140981106917139

𝜋8

8821612800
 1.07560048612319 × 10−6

18
π9

362880
 0.0821458866111282

𝜋9

95126814720
 3.13361689037812 × 10−7

19
1024π9

654729075
 0.0466216010300885

𝜋9

335221286400
 8.89236469842692 × 10−8

20
π10

3628800
 0.025806891390014

𝜋10

3805072588800
 2.46113695049420 × 10−8

21
2048π10

13749310575
 0.013949150409021

𝜋10

14079294028800
 6.65147324038553 × 10−9

22
π11

39916800
 0.00737043094571435

𝜋11

167423193907200
 1.75724767344340 × 10−9

23
4096π11

316234143225
 0.00381065638685212

𝜋11

647647525324800
 4.54265640598789 × 10−10

24
π12

479001600
 0.00192957430940392

𝜋12

8036313307545600
 1.15011591279741 × 10−10

25
8192𝜋12

7905853580625
 9.57722408823173 × 10−4

𝜋12

32382376266240000
 2.85423519856683 × 10−11

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

492

Figure 4. Volume of a unit sphere, Vd , in d dimensions

E. Computation Model

Our implementation of the computation model is simply computing the unit sphere volume of the part where all

coordinates are positive, that is, the first “orthant” only, where 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, … , 𝑑, which is 𝑉𝑜 = 𝑉𝑑/2𝑑. The exact

and approximate values of 𝑉𝑑/2𝑑, in machine double precision, are also presented in Table 1. The values of 𝑉𝑑/2𝑑 diminish

rapidly as d increases (see Figure 5).

Figure 5. Volume of an orthant of a unit sphere, Vd/2

d , in d dimensions

As indicator of computation accuracy, we compute (or extract) the approximate value of π. The reason behind this is that π

is known as a universal constant, which, despite it is an irrational number, its approximate value is well known very accurate

to many (even billions and trillions) significant figures [26] [27] [28].

Computation of π from 𝑉𝑜 = 𝑉𝑑/2𝑑 is done using equation (11), 𝜋 = (𝑉𝑑 Γ(1 + 𝑑/2))
2/𝑑

, and values from Table 1 for

various value of d. Instead of using the matching decimal digits of π, we use the metric of the accuracy of computed value of

π, which is calculated as

𝑎𝜋 = 1 −
|∆𝜋|

𝜋
 , (12)

where ∆𝜋 = 𝜋̂ − 𝜋 is the difference of computed 𝜋̂ and the “actual” 𝜋, that is, a value of machine double precision π =

3.14159265358979, which is used here.

0

1

2

3

4

5

6

0 5 10 15 20 25

V
d

Dimension, d

Volume of a unit sphere

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

V
d
 /2

d

Dimension, d

Volume of an orthant of a unit sphere

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

493

• Volume Approximation by Random Sampling of the Unit Sphere Function

Computation of the volume of the unit sphere’s first orthant, 𝑉𝑜 = 𝑉𝑑/2𝑑 is performed by using the integral in equation

(9) where numerically approximated using random sampling in equation (8), as follow:

𝑉𝑜 = ∭ ∫ √1 − 𝑥1
2−𝑥2

2 − ⋯ − 𝑥𝑑−1
2 𝑑𝑥1𝑑𝑥2𝑑𝑥3 ⋯ 𝑑𝑥𝑑−1

𝑥1
2+𝑥2

2+⋯+𝑥𝑑−1
2 ≤ 1

≈
|Ω|

𝑁
∑ 𝑓((𝑥1, 𝑥2, … , 𝑥𝑑−1)𝑖)

𝑁

𝑖=1

 , (13)

where the function f in the right-hand side is averaged over the domain “area”, Ω = (1 − 0)𝑑−1 = 1. The function f itself

has the form of:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑑−1) = {
√1 − 𝑥1

2−𝑥2
2 − ⋯ − 𝑥𝑑−1

2 , 𝑥1
2+𝑥2

2 + ⋯ + 𝑥𝑑−1
2 ≤ 1

0, elsewhere

 (14)

A random sample of size N of function (14) is picked, and averaged, as in the equation (13), leading to the computed value

of 𝑉𝑜. The situation of sampling of the function in three dimensions is illustrated in Figure 6.

Figure 6. Illustration of random sampling of the first octant of a unit sphere function in three dimensions

Implementation of the random sampling of the function of a unit sphere in 7 dimensions is presented in Code 1, where the

assignment of all coordinate variables was done directly without a loop, to prevent the introduction of index and array

variables, in order to optimize the code to gain best execution performance possible.

Code 1. Random sampling of the function of a unit sphere’s first orthant in 7 dimensions in CUDA C/C++

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

494

• Volume Approximation by Random Point Sampling in the Unit Sphere

For comparison, computation of the volume of the unit sphere’s first orthant, 𝑉𝑜 = 𝑉𝑑/2𝑑 is also performed by using
random point sampling in the unit sphere. This method has been studied for simpler cases, for example, like in a two-

dimensional circle [8] [9]. The algorithm woks by simply counting the number of random points inside the unit sphere’s first

orthant, divided by total number of random points generated in the d-dimensional unit cube of that particular orthant, that is:

𝑉𝑜 ≈
𝑛𝑆

𝑁
 . (15)

For this computation, the greater the sample size N, the better, particularly when in higher dimension, as d increases. The

random point sampling is illustrated in Figure 7. Implementation of the random point sampling inside the unit sphere’s first

orthant is presented in Code 2, where the assignment of all coordinate variables was done directly without a loop, to prevent

the introduction of index and array variables, in order to optimize the code to gain best execution performance possible.

Figure 7. Illustration of random point sampling in a unit sphere’s first orthant in three dimensions

Code 2. Random point sampling in a unit sphere’s first orthant in 7 dimensions in CUDA C/C++

• Hardware

The computation was performed on a relatively fast hardware with CPU AMD Ryzen 9 5900X running at 4.8 GHz, 12

cores, 24 threads, equipped with 64 GB of DDR4 RAM and a GPGPU NVIDIA RTX3080Ti with 10240 computing cores,

and 12 GB of GDDR5 VRAM. The computation code was developed in CUDA C/C++ and compiled in a Linux environment.

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

495

III. RESULTS AND DISCUSSION

The computation is performed for 2, 3, 7, 15, and 24 dimensions. The reason behind this is that we want to perform the

computation of a relatively high-dimensional calculations. Above 24 dimensions, starting d = 25 and more, the results were

inaccurate due to data type limitation of the GPU capabilities, that is, the GPU’s double precision data type is not enough to

accurately calculate the result. Dimensions d = 2 and 3 were chosen simply because they are everyday geometry which can

be checked in ease. While dimensions d = 7 and 15 were chosen because 7 and 15 are close to 8 and 16, respectively, which

spans evenly between 1 and 24. Another reason dimension d = 7 and 15 were chosen because they are odd numbers, hence

there are three odd dimensions (3, 7, 15) and two even dimensions (2, 24). In these computations, all of the accuracies, aπ, of

the computed value of π were calculated according to equation (12).

A. Random Sampling Integration

For these computations, random sample size, 𝑁 = 3.2768 × 1011 is chosen. This number is from 32 warp size × 10240

computing core × 1000000 iterations. The computations were performed 128 times, and the results were averaged.

The computation results which are approximate values of π, and their accuracies, are presented in Figure 8a and Figure 8b,

respectively. Execution time of every computation is shown in Figure 9a, where it increases in a linear trend as seen in Figure

9b. Error bars on those figures are margin errors calculated from those 128 computation batches.

Figure 8. (a) Computed value of π, displayed in full machine double precision, averaged from batches. Please notice that the vertical axis is zoomed (3.1 to

3.2) to emphasize the small variations of the results. (b) Accuracy of the computed value of π, averaged from batches.

Figure 9. (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and number of dimensions.

0.9999996 0.9999991 0.9999689 0.9997822 0.9917814

0

0.2

0.4

0.6

0.8

1

2 3 7 15 24

A
cc

u
ra

cy

Dimension, d

3.14159243738828

3.14159242840961

3.14149491450184

3.14227674739719

3.16457071238398

3.1

3.12

3.14

3.16

3.18

3.2

2 3 7 15 24

C
o

m
p

u
te

d
 v

al
u
e

o
f

π

Dimension, d

(a) (b)

13.5287

18.7100

27.7172

35.6497

57.6943

0

10

20

30

40

50

60

70

2 3 7 15 24

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Dimension, d

t = 1.846433756 d + 11.826393984

r² = 0.973365175

0

10

20

30

40

50

60

70

0 5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Dimension, d

(a) (b)

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

496

B. Random Sampling Point Counting

For these computations, random sample size, 𝑁 = 3.2768 × 1011 is chosen. This number is from 32 warp size × 10240

computing core × 1000000 iterations. The computations were performed 128 times, and the results were averaged.

The computation results which are approximate values of π, and their accuracies, are presented in Figure 10a and Figure 10b,

respectively. Execution time of every computation is shown in Figure 11a, where it increases in a linear trend as seen in

Figure 11b. Error bars on those figures are margin errors calculated from those 128 computation batches.

Figure 10. (a) Computed value of π, displayed in full machine double precision, averaged from batches. Please notice that the vertical axis is zoomed (3.1

to 3.2) to emphasize the small variations of the results. (b) Accuracy of the computed value of π, averaged from batches.

Figure 11. (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and number of dimensions.

C. Random Sampling Integration in 24-dimensional Space Using Various Sample Sizes.

Here the results of random sampling integration computation are presented using various sample sizes, from 𝑁 =
3.2768 × 109 up to 𝑁 = 3.2768 × 1013.

3.14159233318262

3.14159239651150 3.14139670594307 3.14268581312338

3.16849087431189

3.1

3.12

3.14

3.16

3.18

3.2

2 3 7 15 24

C
o

m
p

u
te

d
 v

al
u
e

o
f

π

Dimension, d

0.9999993 0.9999986 0.9999376 0.9996520 0.9880260

0

0.2

0.4

0.6

0.8

1

2 3 7 15 24

A
cc

u
ra

cy

Dimension, d

(a) (b)

0.6108

9.3546

18.5912

38.1419

60.0215

0

10

20

30

40

50

60

70

2 3 7 15 24

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Dimension, d

t = 2.565707182 d - 0.826172685

r² = 0.990038112

0

10

20

30

40

50

60

70

0 5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Dimension, d

(a) (b)

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

497

Figure 12 (a) Computed value of π, displayed in full machine double precision, averaged from batches. (b) Accuracy of the computed value of π, averaged

from batches.

Figure 13 (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and sample size. Please notice that

both axes use logarithmic scales.

D. Random Sampling Point Counting in 24-dimensional Space Using Various Sample Sizes.

Here the results of random sampling point counting computation are presented using various sample sizes, from 𝑁 =
3.2768 × 109 up to 𝑁 = 3.2768 × 1013.

Figure 14 (a) Computed value of π, displayed in full machine double precision, averaged from batches. (b) Accuracy of the computed value of π, averaged

from batches.

0.7390239

0.9805191 0.9917814 0.9930922 0.9927859

0

0.2

0.4

0.6

0.8

1

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

A
cc

u
ra

cy

Sample size

(b)

2.45120756409496

3.15481113389686

3.16457071238398

3.16329420269841

3.16425646968017

0

0.5

1

1.5

2

2.5

3

3.5

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

C
o

m
p

u
te

d
 v

al
u
e

o
f

π

Sample size

(a)

t = 1.744548620E-10 d + 1.206767224

r² = 0.9999993929

0.1

1

10

100

1000

10000

1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Sample size

0.5717 5.7243 57.6943

576.2775

5717.4101

0

1000

2000

3000

4000

5000

6000

7000

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Sample size

(a) (b)

0.2835057

0.9471983
0.9880260 0.9919049 0.9918618

0

0.2

0.4

0.6

0.8

1

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

A
cc

u
ra

cy

Sample size

1.07283612629370

3.07984072411748 3.16849087431189 3.16691725772526 3.16715945207791

0

0.5

1

1.5

2

2.5

3

3.5

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

C
o

m
p

u
te

d
 v

al
u
e

o
f

π

Sample size

(a) (b)

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

498

Figure 15 (a) Computation time in seconds, averaged from batches. (b) Linear relationship between computation time and sample size. Please notice that

both axes use logarithmic scales.

E. Random Sampling Integration and Point Counting in 24-dimensional Space using CPU

For comparison, a single threaded CPU computation of π was also performed, in 24 dimensions, using sample size 𝑁 =
3.2768 × 1010. The computations were performed in 128 batches, and the results were averaged. The results are displayed

in Figure 16, where the random sampling integration method outperform the point counting method, that is, more accurate,

slightly faster, and more stable (notice the much smaller error bars on random sampling compared to point counting method).

Error bars on those figures are margin errors calculated from those 128 computation batches.

Figure 16. Computation of π using single threaded CPU: (a) Computed value of π, (b) accuracy, and (c) computation time.

F. General Discussion and Analysis

Here we examine what these results indicate for high-dimensional integration by random sampling in a GPU context. The

objective was to determine whether this method functioned effectively when faced with the challenge of computing the

volume of a unit sphere in d-dimensional space, extending up to 24 dimensions. The results were indeed quite revealing.

 Initially, we would like to examine the accuracy of the results. Through the diverse dimensions explored, from the

conventional two and three dimensions to the expansive seven, 15, or 24 dimensions, the random sampling method proved

highly effective in estimating the volume within a sphere. These are spherical volumes, thereby serving as an effective

standard. Previously, in the lower-dimensional realms of 2 or 3, we achieved a highly precise estimate of π. The calculated

value corresponded with the analytically derived result to exceed double precision machine limits. Subsequently,

circumstances began to deteriorate slightly. In 7 dimensions, the mean π from all our measurements approximated 3.14159

with little variations. However, up to 15 dimensions, the results grew progressively dispersed. The selected accuracy

parameter, specifically the relative error formula, demonstrated a decline, from approximately 10–15 in lower dimensions to

0.5957 5.9614 60.0215

602.1966

5968.0922

0

1000

2000

3000

4000

5000

6000

7000

3.2768E+09 3.2768E+10 3.2768E+11 3.2768E+12 3.2768E+13

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Sample size

t = 1.821025696E-10 d + 1.356306656

r² = 0.9999991941

0.1

1

10

100

1000

10000

1.E+09 1.E+10 1.E+11 1.E+12 1.E+13 1.E+14

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Sample size

(a) (b)

3.12148425599010

3.02836083102624

0

0.5

1

1.5

2

2.5

3

3.5

24D Integration 24D Point Counting

C
o

m
p

u
te

d
 v

al
u
e

o
f

π

Algorithm

0.9791865 0.9431208

0

0.2

0.4

0.6

0.8

1

24D Integration 24D Point Counting

A
cc

u
ra

cy

Algorithm

9369.69
9774.01

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

24D Integration 24D Point Counting

C
o

m
p

u
ta

ti
o

n
 t

im
e,

 t
(s

)

Algorithm

(a) (b) (c)

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

499

roughly 10–10 or worse in 24 dimensions. As the dimensions expand, the volume of the orthant diminishes by several orders

of magnitude. Essentially, this indicates that the computation requires far more samples to achieve equivalent precision, as

elucidated by Monte Carlo theory.

The potential of the GPU is evident in this instance, achieving up to billions of points in certain runs, indicating a significant

advancement. The durations observed were notably brief, frequently less than one second for low dimensions, and generally

increased linearly with both dimension d and sample size N. Figure 9b and Figure 11b illustrate linear relationship between

computation time and dimensions, with correlation r2 close to 1, indicating that GPU parallelization effectively manages the

additional coordinates, not to mention obvious linear relationship between computation time and sample size (Figure 13b and

Figure 15b), also with correlation r2 close to 1. The addition of each dimension results in an extra operations within the kernel;

however, due to the parallel operation of the cores, the computational load is lessened compared to that on a CPU as the

baseline (see Figure 16). We observed time intervals increase from milliseconds in two dimensions to several seconds in 24

dimensions for the same sample size.

Trade-offs were apparent in the comparison between random sampling integration and the point counting method. The

concept of point counting is more straightforward than the sampling integration distribution; it exemplifies a Monte Carlo

hit-or-miss method, as indicated by its name. In our experiments, point-counting yielded satisfactory results at lower

dimensions; however, its precision was somewhat inferior to that of random sampling integration at higher dimensions. In a

24-dimensional space, for example, the point counting method yielded π estimates that exhibited less accuracy, particularly

when sample size is relatively small, as we can compare Figure 12b versus Figure 14b. The rationale behind this is the

following: Point counting is a binary process; it merely assesses whether the sum of squares is less than 1. This method is

computationally efficient but slightly less accurate to represent the function's shape compared to the averaging of the square

root in the random sampling approach.

Those samples integrate the actual height function √1 − 𝑥1
2−𝑥2

2 − ⋯ − 𝑥𝑑−1
2 , it was much better fitted to the

approximation. But on the whole, point counting was slightly slower in execution time. This is because although it didn't

have to do a square root operation, which is computationally more expensive on a GPU (also on CPU), it needs to pick

random samples on d dimensions, while random sampling integration picks samples on (d – 1) dimensions (its hyperplane

domain). But it didn't make much difference, as we're talking fractions of a second per single sample calculation here, so for

most practical purposes where accuracy is better achieved by random sampling integration than point counting.

In a Monte Carlo simulation, one would expect the error to go down like 1/√𝑁 as it fits our results quite well. For the 24

dimensions case with varying sample size N (see Figure 12 and Figure 13), as N increases, the computed π stabilized closer

to the true value, and the accuracy improved. But as dimension d increases to 25, because of double-precision floating-point

limits, one can't squeeze more digits out without higher precision arithmetic. That's why the computation hit a wall at 25

dimensions, that is, the volumes 𝑉𝑜 = 𝑉𝑑/2𝑑 get so small, in the order of 10–11, hence the sample size must be much greater

than 1011, and the 𝜋 = (32382376266240000 𝑉𝑜)1/12 computation (see Table 1) by the GPU's double precision just can't

represent it accurately. It's a hardware limitation, not a flaw in the method.

G. Computation using GPU and CPU comparison

On a single-threaded computation using CPU (AMD Ryzen 9 5900X), the same code of both random sampling integration

and point counting algorithms took much longer, even several order of magnitude longer for the same large sample size, as

compared to parallel computation using GPU, as shown on Figure 13a, Figure 15a, and Figure 16c. Therefore, this method

is most suited to large problems with massive parallelism. Again, as explained above, here the random sampling integration

method outperformed the point counting method by a small amount (see Figure 16).

H. Random Sampling Integration Method Consideration versus Traditional Riemann Sum Integration

As we mentioned earlier in the introduction, for multidimensional integration, random sampling integration method is

more suitable than traditional Riemann sum integration, as for d-dimensional space, random sampling integration with sample

size NS has complexity of O((𝑑 − 1)𝑁𝑆), compare to O((𝑑 − 1)𝑁𝑃
𝑑−1) for traditional Riemann sum integration with NP

sampling points on each dimension. Therefore, asymptotically for larger dimensions, the former method is still feasible

whereas the latter grows exponentially with dimension, d, making it not feasible. Here is the limit of their complexity ratio:

lim
𝑑→∞

(𝑑 − 1)𝑁𝑆

(𝑑 − 1)𝑁𝑃
𝑑−1 = lim

𝑑→∞

𝑁𝑆

𝑁𝑃
𝑑−1 = 0. (16)

Equation (16) shows that the limit approaches zero as d approaches infinity, showing the superiority of the random sampling

integration technique.

Jurnal Teknik Informatika dan Sistem Informasi p-ISSN : 2443-2210

Volume 11 Nomor 3 Desember 2025 e-ISSN : 2443-2229

500

IV. CONCLUSION

We have shown that using random sampling in conjunction with high-performance computing using GPU is particularly

attractive when dealing with those problematic multidimensional integrals which traditional methods find not feasible. By

taking the example of volumes of spheres in different dimensions as our test case for this random sampling integration method,

we found that it produces results of high accuracy at least up to dimension 24, with computation times within reason for

parallel processing compared to longer computation time on the CPU as baseline (see Figure 16). This is the definitive answer

to our research question. It might be interesting to look beyond 24 dimensions in the future or modify the sampling for even

more complex functions, but for now one thing is clear: combining randomness with the power of high-performance hardware

can fundamentally tackle multidimensional numerical integration problems.

On a larger scale random sampling integration on GPU’s results suggest that they're powerful tools to solve high-

dimensional problems which simple deterministic methods like Riemann sums couldn't ever reach. As the sphere example

demonstrates‚ with the symmetry and computability like this, it only represents a certain type of integral in physics or statistics:

those where there are radial dependencies and constraints. In quantum path integrals‚ for example, one is often integrating

high-dimensional configuration spaces [10] [29] [30]. Similarly, in finance pricing options with many variables may benefit

greatly from its precision at broad scales [12]. Of course, there are caveats. Random number generation by GPU isn't perfect:

we used the pseudorandom number generator CURAND for our work, plus in very high dimensions correlations may crop

up if proper seeding isn't done. We ameliorated those by using timer as random number seeds, and performed multiple batches

and averaging them together. Also, there is the power drain, that is, GPUs consumes high electricity energy‚ so for these

large jobs that's one factor. And though we did well up to 24 dimensions, actual integrals may have odd domains or functions

which oscillate heavily. Techniques for variance reduction, such as importance sampling, could be added on top to solve this

problem.

ACKNOWLEDGEMENT

This research is conducted under Skema B research project of Lembaga Penelitian dan Pengabdian kepada Masyarakat

(LPPM), Universitas Kristen Maranatha. The funding and administrative supports from LPPM and the Faculty of Smart

Technology and Engineering (FTRC), Universitas Kristen Maranatha are fully acknowledged.

REFERENCES

[1] J. Stewart, D. Clegg and S. Watson, Calculus, 9th Edition, Boston, Massachusetts: Cengage Learning, 2020.

[2] R. E. Bellman, Dynamic Programming, Courier Dover Corporation, 2003.

[3] C. M. Bishop, "Section 1.4: The Curse of Dimensionality," in Pattern Recognition and Machine Learning, Berlin, Springer, 2006.

[4] T. Hastie, R. Tibshirani and J. Friedman, "Section 2.5: The Curse of Dimensionality," in The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, Second edition, Berlin, Springer, 2009.

[5] R. E. Caflisch, "Monte Carlo and quasi-Monte Carlo methods," Acta Numerica, vol. 7, pp. 1-49, 1998.

[6] M. Sugiyama, "Chapter 19 - Numerical Approximation of Predictive Distribution," in Introduction to Statistical Machine Learning, M. Sugiyama,

Ed., Burlington, Massachusetts, Morgan Kaufmann, 2016, pp. 205-220.

[7] J. Stewart, D. Clegg and S. Watson, Multivariable Calculus, 9th Edition, Boston, Massachusetts: Cengage Learning, 2020.

[8] K. Achilles, "Monte Carlo Pi," in BASIC und Pascal im Vergleich. Vieweg Programmbibliothek Mikrocomputer, vol. 3, Springer Fachmedien

Wiesbaden, 1983.

[9] R. Sharma, P. Singhal and M. K. Agrawal, "Application of Monte-Carlo Simulations in Estimation of Pi," in IOP Conference Series Materials Science
and Engineering, 2021.

[10] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended Edition, Mineola, New York: Dover Publications, 2010, pp. 29-

31.

[11] N. Metropoli, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, "Equation of State Calculations by Fast Computing Machines," The

Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.

[12] P. Glasserman, Monte Carlo Methods in Financial Engineering, Berlin: Springer Science & Business Media, 2004.

[13] C. Andrieu, N. de Freitas, A. Doucet and M. Jordan, "An introduction to MCMC for machine learning," Machine Learning, vol. 50, no. 1, pp. 5-43,

2003.

[14] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola, Global Sensitivity Analysis The Primer,
Chichester: Wiley, 2008.

[15] A. I. Naimi, D. Benkeser and J. E. Rudolph, "Monte Carlo Integration in Simple and Complex Simulation Designs," arXiv:2406.15285v2, 2024.

[16] S. Roman, Advanced Linear Algebra, 2nd Edition, New York: Springer, 2005.

[17] E. W. Weisstein, "Hyperoctant," Wolfram, [Online]. Available: https://mathworld.wolfram.com/Hyperoctant.html. [Accessed 1 Jan 2025].

[18] D. S. Balsara and M. Dumbser, "Multidimensional Riemann problem with self-similar internal structure. Part II – Application to hyperbolic

conservation laws on unstructured meshes," Journal of Computational Physics, vol. 287, pp. 269-292, 15 April 2015.

p-ISSN : 2443-2210 Jurnal Teknik Informatika dan Sistem Informasi

e-ISSN : 2443-2229 Volume 11 Nomor 3 Desember 2025

501

[19] R. Martínez-Planell and M. Trigueros, "Students’ understanding of Riemann sums for integrals of functions of two variables," The Journal of

Mathematical Behavior, vol. 59, Sep 2020.

[20] K. A. Schneider, J. M. Gallardo, D. S. Balsara, B. Nkonga and C. Parés, "Multidimensional approximate Riemann solvers for hyperbolic
nonconservative systems. Applications to shallow water systems," Journal of Computational Physics, vol. 444, p. 110547, 1 November 2021.

[21] D. J. Smith and M. K. Vamanamurthy, "How Small Is a Unit Ball?," Mathematics Magazine, vol. 62, no. 2, p. 101–107, 1989.

[22] B. Hayes, "An Adventure in the Nth Dimension," Sigma Xi, The Scientific Research Honor Society, 2025. [Online]. Available:
https://www.americanscientist.org/article/an-adventure-in-the-nth-dimension. [Accessed 1 May 2025].

[23] NIST, "NIST Digital Library of Mathematical Functions," National Institute of Standards and Technology, 2001. [Online]. Available:
https://dlmf.nist.gov/5.19#E4. [Accessed 1 Jan 2025].

[24] H. R. Parks, "The volume of the unit n-ball," Mathematics Magazine, vol. 86, no. 4, p. 270–274, 2013.

[25] J. Gipple, "The volume of n-balls," Rose-Hulman Undergraduate Mathematics Journal, vol. 15, no. 1, p. 14 (online article), 2014.

[26] D. H. Bailey, S. M. Plouffe, P. B. Borwein and J. M. Borwein, "The quest for PI," The Mathematical Intelligencer, vol. 19, p. 50–56, 01 December

1997.

[27] R. P. Agarwal, H. Agarwal and S. K. Sen, "Birth, growth and computation of pi to ten trillion digits," Advances in Difference Equations, vol. 100
(2013), 2013.

[28] A. J. Yee, "Pi Record Smashed at 202 Trillion Digits," NumberWorld.org, 28 June 2024. [Online]. Available: https://www.numberworld.org/y-

cruncher/news/2024.html#2024_6_28. [Accessed 1 Jan 2025].

[29] S. A. Chin, "High-order path-integral Monte Carlo methods for solving quantum dot problems," Physical Review E, vol. 91, no. 3, p. 031301, 2015.

[30] H. A. Camargo, P. Caputa and P. Nandy , "Q-curvature and path integral complexity," Journal of High Energy Physics, vol. 2022, no. 81, 2022.

