Optimasi Fuzzy Artificial Neural Network dengan Algoritma Genetika untuk Prediksi Harga Crude Palm Oil
Main Article Content
Abstract
Crude Palm Oil (CPO) is one of Indonesia's best export commodities. CPO production competition causes price fluctuations so that it can trigger losses. The solution that can be taken to avoid losses is to predict the price of CPO. Time series data in the previous months, starting from January 2009 until January 2020, are used as a reference to predict the next CPO price. In this research, CPO price prediction is carried out with a combination of artificial intelligence concepts, namely Radial Basis Function Neural Network (RBFNN), and fuzzy logic. The combination of these methods, namely Fuzzy Radial Basis Function Neural Network (FRBFNN), is then optimized using genetic algorithms. The prediction results show that the error based on the MAPE value for FRBFNN prediction on training data is 11.7% and the MAPE value for testing data is 9.4%. In the FRBFNN prediction that was optimized using a genetic algorithm, the MAPE value was 10.2% for training data and 8.3% for testing data.
Downloads
Download data is not yet available.
Article Details
How to Cite
[1]
A. Rifa’i, “Optimasi Fuzzy Artificial Neural Network dengan Algoritma Genetika untuk Prediksi Harga Crude Palm Oil”, JuTISI, vol. 6, no. 2, Aug. 2020.
Section
Articles
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.