Dental Age Estimation In Indonesian Population: A Literature Review

Rosalina Intan Saputri¹

¹ Faculty of Dentistry, Maranatha Christian University, Indonesia

Abstract

Age is one of the important parts of the identification process, which could be a requirement in legal framework, criminal investigation, and to provide significant information for diagnosis and treatment planning in health care. Age estimation is a major study in forensic, especially when the information related to the deceased is unavailable. Dental is one of the strong variables which could be used in estimating the age of living or deceased. Dental age estimation methods were mainly based on the changes in tooth development which influenced by diverse internal and external factor. Therefore, studies of dental age estimation of various population showed different discrepancies. This paper reviews about studies of dental age estimation methods, study sample, and studies' findings.

Keywords: dental, age estimation, Indonesian population, forensic odontology

Introduction

Aging, or process of becoming older, is a complex phenomenon which is influenced by many factors in genome and environment^{1–3}. Recently, it is become an evidence that epigenetic modifications play an equally essential role in growth development and this process is very susceptible to environmental changes¹. Although sometimes there are discrepancies between biological age and chronological age due developmental variation, parameter such as dental development is reliable indicator for age⁴. Teeth undergo development process in several stages, therefore different morphological stages of mineralization correlate with the different developmental stages making dental as an important variable in age estimation⁵.

Different studies of environmental influence on tooth development had also been conducted. Number of factor influenced the permanent teeth eruption, included nutrition and socioeconomic factors³. It also had been studied that environmental stress can lead to changes in dental morphology². Considering the influenced, study of age estimation using dental parameter also had been conducted in different population^{6–10}. Environmental influenced on dental development was proved by different variation of result discrepancies of dental estimated age between populations. The aim of present review is

to integrate researches involving age estimation methods based on dental development in Indonesian population.

Methodological Approach

Searches were conducted in electronic databases of Google Scholar using main search terms included dental, age, estimation, Indonesia, and population. Publication was selected based in criteria (1) written in English or Indonesian and (2) used dental development as variable(s) to estimate age or examine dental parameter(s) in correlation with age. All studies were included regardless of publication time and the relevant information from each study was gathered and summarized.

Dental Age Estimation in Indonesian Population

Studies of dental age estimation in Indonesian population were conducted by various discipline, not limited to dentist or forensic expert. There were 14 studies found from the conducted search, which summarized in Table 1. The age coverage of the most study was young adult and children $(71\%)^{11-20}$. Only three studies which involved age range more than 25 years^{21–23}. The youngest age of population involved in the studies was 4 years and the oldest was 73 years^{11,22,23}. There is one study which did not specifically mentioned the age range information²⁴.

Figure 1. Distribution of the dental age estimation methods from the observed studies.

Authors	Age range	Sample size (Female+	Teeth Examined	Age Estimation Methods (stages)	Summary of Research Finding(s)
	(years)	Male)		Methous (stages)	
Yunus and	4-9	30 (18+12)	Seven left mandibular	Demirjian (8)	Significant over estimation of dental
Wardhani ¹¹			permanent teeth, except of		age compared with the chronological
			third molar on panoramic		age.
			radiograph.		
Luthfi et al. ²¹	13-29	100 (70+30)	All third molars on panoramic	Modified Demirjian	Chronological age of each
			radiograph.	(8)	Demirjian's stage. Discrepancy of
					age between gender.
Nawawi et al. ¹²	6-14	22	Seven left mandibular	Demirjian (8)	Under estimation of dental age in
		(Down	permanent teeth, except of		down Syndrome children, however
		syndrome	third molar on panoramic		no significant difference between
		children: 11;	radiograph.		dental age in down Syndrome
		Normal			children and normal children.
		children: 11)			
Marjianto et al. ¹³	6-12.99	117 (53+64)	All permanent teeth except for	N/A	Chronological age of each permanent
			third molar clinical eruption.		tooth eruption.
Hidayat et al. ²²	13-73	41 (22+19)	Canine on Cone Beam	Pulp Chamber	Regression formula of age estimation
			Computed Tomography	Volume and Age	based on change of pulp chamber
			(CBCT).	Correlation	volume.
Kasuma et al. ¹⁴	16-21	600	Third molar clinical eruption.	N/A	Chronological age of maxillary and
		(300+300)			mandibular third molar eruption.

 Table 1. Studies of Dental Age Estimation in Indonesian Population

Firdaus et al. ¹⁵	8-25	407	Third molars on panoramic	Modified Demirjian	Regression formula of age estimation
		(222+185)	radiograph.	(8)	for one and combination of third
					molars.
Holman and	-	468	Deciduous teeth clinical	N/A	Proportion of emerged teeth by the
Jones ²⁴			eruption.		age and chorological age of
					deciduous teeth eruption.
Amiroh et al. ¹⁶	15-22	100 (50+50)	Third molars on panoramic	Modified Demirjian	Eight stages of Demirjian showed
	and		radiograph.	(8 and 10)	smaller deviation of age estimation
	15-25				than ten stages.
Hidayati et al. ¹⁷	15-25	100 (50+50)	Maxillary and mandibular	Gleiser and Hunt (37)	Significant over estimation of dental
			second and third molars on	and	age for age range 15-25 and no
			panoramic radiograph.	modified by Köhler	significant over estimation for age
				et al. (10) (mentioned	range 15-22
				by Thevissen	
				methods)	
Farahyati et al. ¹⁸	16-21	34	Mandibular first premolars on	Kvaal, Schour and	No significant difference between
			periapical, permanent teeth on	Massler, Tooth	age estimation of TCI-Benindra in
			panoramic, and lateral	Crown Index (TCI)	panoramic and periapical radiograph.
			cephalometric radiographs.	Benindra	Significant difference found between
					age estimation of TCI-Benindra on
					periapical radiograph and Kvaal
					method on panoramic, TCI-Benindra
					on panoramic radiograph and Schour
					and Massler on lateral cephalometric
					radiographs.

SONDE (Sound of Dentistry) Vol 5 No 1

Nurfitria et al. ¹⁹	16-21	34	Mandibular first molar on periapical, permanent teeth panoramic, and lateral cephalometric radiographs.	Al-Qahtani, Blenkin- Taylor, TCI- Benindra	No significant difference found between age estimation of TCI- Benindra with Al-Qahtani's method and Blenkin-Taylor's method.
Yulianti et al. ²⁰	9-21	70 (35+35)	Mandibular premolar on panoramic radiographs.	TCI-Benindra	Insignificant over estimation of dental age using TCI-Benindra
Yuniarti et al. ²³	50-73	31 (30+1)	Maxillary central and lateral incisors, maxillary second premolar, mandibular lateral incisor, mandibular canine, and mandibular first premolar on panoramic radiographs.	Tooth length and age correlation	Regression formula of age estimation based on highest correlation with lengths of teeth (mandibular canine). Developed automatic age estimation system based on the derived regression formula to estimate age on panoramic radiography.

The age's range and sample options are related to which age estimation method should be used in the studies. The most age estimation method applied in Indonesian population was Demirjian's method, with or without modification $(35.71\%)^{11,12,15,16,21}$, followed by TCI-Benindra's method $(21.42\%)^{18-20}$, and the other methods (7.14%-13%), as presented in Figure 1. Panoramic radiograph was the most used sample for the studies $(53\%)^{11,12,15-21,23}$, followed by clinical examination $(17\%)^{13,14,24}$, periapical radiograph $(12\%)^{18,19}$, lateral cephalometric radiograph $(12\%)^{18,19}$, and CBCT $(6\%)^{22}$ (Figure 2).

Figure 2. Distribution of the sample from the observed studies

Panoramic radiographs able to showed development of upper and lower jaw dentition, which should be observed for certain methods such as Demirjian's method, Köhler's method, Schour and Massler's method, and AlQahtani's method. Demirjian's method used seven left permanent mandibular teeth for age predictor which can be observed from panoramic radiographs²⁵. When all the seven left permanent mandibular teeth had reached the highest stage, the age prediction from these methods could only give the least age from individual of 16 years²⁵. Considering number evidences with permanent teeth had reach the highest stage, which could predict that the least age of individuals were 16 years, the age estimation should be taken from the combination of third molar. Köhler's method of age estimation used parameter of third molar development stages²⁶. Therefore, this method could apply to individual with developing third molar, until around 23 years.

Schour and Massler's method and AlQahtani's method was atlases with schematic drawing of upper and lower teeth from right region to estimate the age applied to the panoramic radiographs^{27,28}. Unlike AlQahtani's atlas, Schour and Massler's does not have

details diagram for third molar development and only can estimated the oldest age of 21 years old.²⁷ While in AlQahtani's atlas, development of third molar is included up till 23.5 years old which preferable when all the seven permanent teeth have reached the complete development²⁸. Blenkin-Taylor's atlas was a modification of Uberlaker's atlas for Australian population which also incorporate the third molar and can estimate the age up to 25 years²⁹.

There are studies which developed their own methods to estimate the age by measuring certain morphological changes related with aging, such as pulp chamber volume and tooth length. Previous method using tooth length and pulp length also had been developed by Kvaal which provided non-destructive methods for single tooth or combination of teeth, which also can be used for attached teeth on the individual³⁰. Because of the limitation of age estimation from method which used development of deciduous and permanent teeth, Kvaal's method is an option to estimate individual with age more than 23 years³⁰.

Three studies observed clinical eruption of deciduous and permanent teeth in correlation with chronological age^{13,14,24}. Eruption of teeth is one of the parameters which can be observed easily among the various dynamic development changes occurred from the formation of teeth to the final maturation. The most widely used dental eruption age method was the overview from American Dental Association (ADA)³¹. However, tooth eruption or gingival emergence represents only one stage in the continuous whole process of dental development and maturity²⁵.

Recommendation

Dental age estimation research in Indonesian population had involved various methods, however, it is still of mainly focused on children until young adult. Therefore, more studies are needed for the adult age range, which examined morphological changes in teeth after 23 years old, such as Kvaal's method. As the development of technology, it is also important to compare the present age estimation method on advanced dental radiograph, such as 3D imaging. Research with combination of different dental age estimation methods also can be examined further. The long-term goals and concerns of dental age estimation studies in Indonesian population are to develop, verify, assist the progress and application of the most accurate methods.

References

- 1. Cameron N. *The Human Growth Curve, Canalization and Catch-Up Growth*. In:Cameron N, Bogin B, editor. Human Growth and Deveopment. 2012. London : Elsevier Inc.
- 2. Riga A, Belcastro MG, Moggi-Cecchi J. Environmental Influence on Dental Morphology. 2013. 1-21. Available at: http://arxiv.org/abs/1301.7334.
- 3. Almonaitiene R, Balciuniene I, Tutkuviene J. Factors influencing permanent teeth

eruption. Part one--general factors. Stomatologija. 2010. 12(3):67-72.

- 4. McKenna CJ, James H, Taylor JA, Townsend GC. Tooth development standards for South Australia. *Aust Dent J.* 2002. 47(3):223-7.
- 5. Fehrenbach MJ, Popowics T. Illustrated Dental Embryology, Histology, and Anatomy, 4th ed. 2016. Missouri : Elsevier Saunders.
- 6. Karkhanis S, Mack P, Franklin D. Age estimation standards for a Western Australian population using the dental age estimation technique developed by Kvaal et al. *Forensic Sci Int.* 2014. 235:104.e1-104.e6.
- 7. Mani SA, Naing L, John J, Samsudin AR. Comparison of two methods of dental age estimation in 7-15-year-old Malays. *Int J Paediatr Dent*. 2008. 18(5):380-8.
- Cruz-Landeira A, Linares-Argote J, Martínez-Rodríguez M, Rodríguez-Calvo MS, Otero XL, Concheiro L. Dental age estimation in Spanish and Venezuelan children. Comparison of Demirjian and Chaillet's scores. *Int J Legal Med*. 2010. 124(2):105-12.
- 9. Willems G, Van Olmen A, Spieessens B, Carels C. Dental Age Estimation in Belgian Children: Demirjian's Technique Revisited. *J Forensic Sci.* 2001. 46(4):893-5.
- 10. Tunc E S, Koyuturk AE. Dental age assessment using Demirjian's method on northern Turkish children. *Forensic Sci Int.* 2008.175(1):23-6.
- 11. Yunus B, Wardhani Y. Differences chronological age and dental age using Demirjian method based upon a study radiology using radiography panoramic at the Dental Hospital Hasanuddin University. *J Dentomaxillofacial Sci.* 2016. 1(2):103-8.
- 12. Nawawi AM, Gartika M, Soewondo W. Chronological age and dental age using Demirjian in down syndrome children. *Am J Appl Sci.* 2018. 15(3):182-5.
- 13. Marjianto A, Sylvia M, Wahluyo S. Permanent tooth eruption based on chronological age and gender in 6-12-year old children on Madura. *Dent J (Majalah Kedokt Gigi)*. 2019. 52(2):100-4.
- 14. Kasuma N, Hasam SA, Fitri H, Fajrin FN. Estimating age of maxillary and mandibular third molar eruption in late adolescent age. *BMC Public Health*. 2017. 17(Suppl 6):O121.
- 15. Firdaus, Puspitawati R, Nehemia B. Age estimation of 8- to 25-year-olds based on third molar calcification using the Demirjian method in an Indonesian population. *J Phys Conf Ser.* 2018. 1073(2) 022005:1-13.
- 16. Amiroh, Priaminiarti M, Syahraini SI. Comparison of age estimation between 15-25 years using a modified form of Demirjian's ten stage method and two teeth regression formula. *J Phys Conf Ser.* 2017. 884(1) 012070:1-7.
- 17. Hidayati DS, Suryonegoro H, Makes BN. The accuracy of 15 25 years age estimation using panoramic radiograph with the vissen method in Indonesia. *J Phys Conf Ser*. 2017. 884(1) 012040:1-6.
- Farahyati S, Soedarsono N, Yuniastuti M, Nehemia B. Predicting age in the age group of 16-21 years using tooth-coronal index-Benindra method: A comparison with Kvaal and Schour and Massler methods. J Phys Conf Ser. 2018. 1073(2) 022013:1-4.
- 19. Nurfitria DT, Soedarsono N, Yuniastuti M, Nehemia B. Comparison of TCI-Benindra formula, Al-Qahtani, and Blenkin-Taylor methods for age estimation in 16-21 year olds. *J Phys Conf Ser*. 2018. 1073(2) 022012:1-4.
- 20. Yulianti NR, Irnamanda DH, Fajar Kusuma DK. Perbandingan prakiraan usia dari

Tooth Coronal Index metode Benindra dengan usia kronologis pada suku Banjar. Dentin (Jur. Ked. Gigi). 2017. 1(1):28-33.

- 21. Luthfi M, Suhartono W, Puspita AD, Auerkari EI. Third molar development age range on Indonesian population from vairous ethinics based on radiograph findings: A preliminary study. *J Int Dent Med Res.* 2017. 10(2):299-302.
- 22. Hidayat SR, Oscandar F, Malinda Y, Sasmita IS, Dardjan M, Murniati N, Lita YA. Human age estimation based on pulp volume of canines for chronological age estimation: Preliminary research. *Padjadjaran J Dent*. 2018. 30(3):183-8.
- 23. Yuniarti A, Arifin AZ, Wijaya AY, Khotimah WN. An age estimation Mmethod to panoramic radiographs from Indonesian individuals. *TELKOMNIKA*. 2013. 11(1):199-206.
- 24. Holman DJ, Jones RE. Longitudinal analysis of deciduous tooth emergence in Indonesian children. I. Life table methodology. *Am J Hum Biol*. 1991. 3(4):289-403.
- 25. Demirjian A, Goldstein H, Tanner JM. A new system of dental age asseessment. Hum Biol. 1973. 45(2): 211-27.
- 26. Köhler S, Schmelzte R, Loitz C, Püschel K. Die entwicklung des weisheitszahnes als kriterium der lebensaltersbestimmung. *Ann Anat.* 1994. 176(4):339-345.
- 27. Schour I, Massler M. Studies in tooth development : the growth pattern of human teeth. *JADA*. 1940. 27(12):1778-93.
- 28. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication : The London Atlas of human tooth development and eruption. *Am J Phys Anthropol*. 2010. 142(3):481-90.
- 29. Blenkin M, Taylor J. Age estimation charts for a modern Australian population. *Forensic Sci Int.* 2012. 221(1-3):106-12.
- 30. Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T. Age estimation of adults from dental radiographs. *Forensic Sci Int.* 1995. 74(3):175-85.
- 31. American Dental Association. Tooth eruption : the permanent teeth . *JADA*. 2006. 137(1):127.