Pengenalan Alfabet American Sign Language Menggunakan K-Nearest Neighbors Dengan Ekstraksi Fitur Histogram Of Oriented Gradients
Isi Artikel Utama
Abstrak
Sign Language use to communicate to people with dissabilities. American Sign Language (ASL) one of popular sign language. Histogram of Oriented Gradient (HOG) can be use as feature extraction. Then feature stored in database. K-Nearest Neighbor use to measure distance between feature train and feature test. There are three distance use in this paper consist of Euclidean Distance, Manhattan Distance and Chebychev Distance. The best result are 0,99 when using Euclidean Distance and Manhattan Distance with k=3 dan k=5
Unduhan
Data unduhan belum tersedia.
Rincian Artikel
Cara Mengutip
[1]
M. E. Al Rivan, H. Irsyad, K. Kevin, dan A. T. Narta, “Pengenalan Alfabet American Sign Language Menggunakan K-Nearest Neighbors Dengan Ekstraksi Fitur Histogram Of Oriented Gradients”, JuTISI, vol. 5, no. 3, Jan 2020.
Terbitan
Bagian
Articles
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.