K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia
Isi Artikel Utama
Abstrak
Tokopedia is a popular marketplace used by e-commerce in Indonesia. Customers’ perception of Twitter towards Tokopedia can be used as an important source of information and can be processed into useful insights. Sentiment analysis is a solution that can be used to process the customers’ perception using K-Nearest Neighbor based on Particle Swarm Optimization. The purpose of this study is to classify customers’ perception based on positive, neutral, and negative classes. The test is carried out with four different scenarios and k values which are evaluated using a confusion matrix. Evaluation results showed the distribution of the dataset is 90:10 and the value of k = 1 is the best evaluation result, which is 88.11%. The feature selection was used for results by using Particle Swarm Optimization. The Particle Swarm Optimization used 20 iterations and 10 particles. It produced 97.9% the best evaluation accuracy, 96.17% precision, 96.62% recall, and 96.39% f-measure.
Unduhan
Data unduhan belum tersedia.
Rincian Artikel
Cara Mengutip
[1]
D. Pajri, Y. Umaidah, dan T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia”, JuTISI, vol. 6, no. 2, Agu 2020.
Terbitan
Bagian
Articles
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.