Faktor-faktor yang Mempengaruhi Desain Akustik Ruang Kelas di Sumatera Utara: Bahasa Indonesia sebagai Bahasa Pengantar Pengajaran
Isi Artikel Utama
Abstrak
Desain akustik yang optimal dalam ruang kelas dapat secara langsung berkontribusi pada peningkatan kemampuan siswa. Studi menunjukkan bahwa penyediaan lingkungan kelas yang optimal memiliki dampak signifikan terhadap pencapaian nilai siswa. Sejumlah siswa mengalami penurunan nilai akibat kesulitan dalam berkonsentrasi, yang disebabkan oleh kurangnya kejelasan dalam mendengar atau adanya gangguan kebisingan.Kementerian Pendidikan Indonesia merencanakan lebih banyak pembangunan fasilitas pendidikan sebagai bagian dari misinya untuk menciptakan pendidikan yang berkualitas tinggi, merata, dan berkelanjutan akan tetapi standar akustik yang berlaku saat ini mengikuti pedoman yang ditetapkan dalam bahasa Inggris. Apakah pendidikan yang menggunakan bahasa Indonesia sebagai bahasa utama akan mempertimbangkan elemen desain arsitektur dan akustik kelas yang diterapkan dalam bahasa Inggris? Studi ini bertujuan untuk menganalisis perspektif arsitektur dan akustik terkait desain akustik yang diterapkan di dalam ruang kelas. Faktor akustik di kelas memiliki dampak signifikan terhadap konsentrasi dan kenyamanan baik siswa maupun guru. Kuesioner telah disebarkan kepada responden di Indonesia yang berprofesi sebagai insinyur akustik, arsitek, dan pendidik untuk mengumpulkan pandangan mereka mengenai faktor-faktor yang mempengaruhi desain akustik di kelas. Tiga puluh individu memberikan respons terhadap kuesioner tersebut, dengan sepuluh orang dari masing-masing kelompok. Aspek desain akustik dari setiap kelompok pekerjaan diukur dengan menggunakan analisis statistik hasil kuesioner, yang menunjukkan signifikansi dan relevansi data yang diperoleh. Secara ringkas, analisis terhadap fitur arsitektur dan akustik kelas di Indonesia dilakukan untuk tujuan perbaikan. Hasil tersebut dapat dimanfaatkan oleh dewan pendidikan sekolah, arsitek, dan insinyur akustik untuk meningkatkan kualitas keputusan desain yang diambil.
Unduhan
Data unduhan belum tersedia.
Rincian Artikel
Cara Mengutip
Siregar, H. A. (2026). Faktor-faktor yang Mempengaruhi Desain Akustik Ruang Kelas di Sumatera Utara: Bahasa Indonesia sebagai Bahasa Pengantar Pengajaran. Serat Rupa: Journal of Design, 10(1), 1–18. https://doi.org/10.28932/srjd.v10i1.11034
Terbitan
Bagian
Articles

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Referensi
Abdou, A., & Guy, R. W. (1996). Spatial information of sound fields for room‐acoustics evaluation and diagnosis. The Journal of the Acoustical Society of America, 100, 3215-3226. https://doi.org/https://doi.org/10.1121/1.417205
Bistafa, S. R., & Bradley, J. S. (2000). Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. The Journal of the Acoustical Society of America, 107, 861-875. https://doi.org/https://doi.org/10.1121/1.428268
Bradley, J. S. (1986). Speech intelligibility studies in classrooms. The Journal of the Acoustical Society of America, 80(3), 846-854. https://doi.org/10.1121/1.393908
Bradlow, A. R. (1995). A comparative acoustic study of English and Spanish vowels. The Journal of the Acoustical Society of America, 97(3), 1916-1924. https://doi.org/https://doi.org/10.1121/1.412064
Choi, C. Y., & McPherson, B. (2005). Noise Levels in Hong Kong Primary Schools: Implications for classroom listening. International Journal of Disability, Development and Education, 52(4), 345-360. https://doi.org/https://doi.org/10.1080/10349120500348714
Choi, S., Guerin, D. A., Kim, H.-Y., Brigham, J. K., & Bauer, T. (2013). Indoor environmental quality of classrooms and student outcomes: A path analysis approach. Journal of Learning Spaces, 2(2).
Crandell, C. C., & Smaldino, J. J. (2000). Classroom acoustics for children with normal hearing and hearing impairment. Language, speech, and hearing services in schools, 31(362-370). https://doi.org/https://doi.org/10.1044/0161-1461.3104.362.
Dada, S., Flores, C., Bastable, K., & Schlosser, R. W. (2021). The effects of augmentative and alternative communication interventions on the receptive language skills of children with developmental disabilities: A scoping review. International Journal of Speech-Language Pathology, 23(3), 247-257. https://doi.org/10.1080/17549507.2020.1797165
Dockrell, J. E., & Shield, B. M. (2006). Acoustical barriers in classrooms: The impact of noise on performance in the classroom. British Educational Research Journal, 32(3), 509-525. https://doi.org/https://doi.org/10.1080/01411920600635494
Earthman, G. I. (2004). Prioritization of 31 criteria for school building adequacy.
Garcia, D. P., Rasmussen, B., & Brunskog, J. (2014). Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective. Forum Acusticum 2014, Krakow. (Original Publication)
Gheller, F., Lovo, E., Arsie, A., & Bovo, R. (2019). Classroom acoustics: Listening problems in children. Building Acoustics, 27(1), 47-59. https://doi.org/https://doi.org/10.1177/1351010X19886035
Goldsworthy, R. L., & Greenberg, J. E. (2004). Analysis of speech-based Speech Transmission Index methods with implications for nonlinear operations. The Journal of the Acoustical Society of America, 116(6), 3679-3689. https://doi.org/10.1121/1.1804628
Guardino, C., & Antia, S. D. (2012). Modifying the Classroom Environment to Increase Engagement and Decrease Disruption with Students Who Are Deaf or Hard of Hearing. The Journal of Deaf Studies and Deaf Education, 17(4), 518-533. https://doi.org/https://doi.org/10.1093/deafed/ens026
Harrington, J., Palethorpe, S., & Watson, C. (2000). Monophthongal vowel changes in Received Pronunciation: an acoustic analysis of the Queen's Christmas broadcasts. Journal of the International Phonetic Association, 30(1), 63-78.
Hasbullah, A., Zahari, W. Y. W., Ismail, M., & Vitasari, P. (2011). A framework study of school facilities performance in public primary school of Batubara district in Indonesia. Procedia-Social and Behavioral Sciences, 15, 3708-3712. https://doi.org/10.1016/j.sbspro.2011.04.360
Hodgson, M., & Nosal, E.-M. (2002). Effect of noise and occupancy on optimal reverberation times for speech intelligibility in classrooms. The Journal of the Acoustical Society of America, 111(2), 931-939. https://doi.org/https://doi.org/10.1121/1.1428264
Hongisto, V., Saarinen, P., Alakoivu, R., & Hakala, J. (2022). Acoustic properties of commercially available thermal insulators − An experimental study. Journal of Building Engineering, 54. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104588
Hopkins, C. P. (2003). Vibration transmission between coupled plates using finite element methods and statistical energy analysis. Part 2: The effect of window apertures in masonry flanking walls. Applied Acoustics, 6(10), 975-997. https://doi.org/https://doi.org/10.1016/S0003-682X(03)00063-X
James, D., Stead, M., Clifton-Brown, D., & Scott, D. (2012). A cost benefit analysis of providing a ‘sound’ environment in educational facilities. Acoustics 2012, Fremantle, Australia. (Original Publication)
Jenkins, A., & Mostafa, T. (2015). The effects of learning on wellbeing for older adults in England. Ageing & Society, 35(10), 2053-2070. https://doi.org/https://doi.org/10.1017/S0144686X14000762
Jo, b. A.-H., Park, C.-J., & Haan, C.-H. (2022). Investigation of the Appropriate Reverberation Time for Lower-Grade Elementary School Classrooms Using Speech Intelligibility Tests. Buildings, 12(6), 808. https://doi.org/https://doi.org/10.3390/buildings12060808
Kolarik, A. J., Raman, R., Moore, B. C. J., Cirstea, S., Gopalakrishnan, S., & Pardhan, S. (2020). The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports, 28(10), 7169. https://doi.org/https://doi.org/10.1038/s41598-020-64306-8
Kuttruff, H. (2016). Room Acoustics. CRC Press. https://doi.org/https://doi.org/10.1201/9781315372150
Levi, S. V., Winters, S. J., & Pisoni, D. B. (2007). Speaker-independent factors affecting the perception of foreign accent in a second language. The Journal of the Acoustical Society of America, 121(4), 2327-2338. https://doi.org/https://doi.org/10.1121/1.2537345
Maekawa, Z. Noise reduction by distance from sources of various shapes. Applied Acoustics, 3(3), 225-238. https://doi.org/https://doi.org/10.1016/0003-682X(70)90027-7
Mealings, K. (2022). Classroom acoustics and cognition: A review of the effects of noise and reverberation on primary school children’s attention and memory. Building Acoustics, 29(3), 401-431. https://doi.org/https://doi.org/10.1177/1351010X221104892
Mikulski, W., & Radosz, J. (2011). Acoustics of Classrooms in Primary Schools – Results of the Reverberation Time and the Speech Transmission Index Assessments in Selected Buildings. Archives of Acoustics, 36(4), 777-793.
Morris, R. F. (2003). The relationships among school facility characteristics, student achievement, and job satisfaction levels among teachers University of Georgia]. Athens, Georgia.
Napoli, M., Krech, P. R., & Holley, L. C. (2008). Mindfulness Training for Elementary School Students: The Attention Academy. Journal of Applied School Psychology, 21(1), 99-125. https://doi.org/https://doi.org/10.1300/J370v21n01_05
Pasamurti, T., & Iyati, W. (2018). Rekayasa Desain Akustik Ruang Kelas SDN Kauffman 1 Malang Universitas Brawijaya]. Malang.
Prasetiyo, I., Desendra, G., Hermanto, M. N., & Adhika, D. R. (2018). On Woven Fabric Sound Absorption Prediction. Archives of Acoustics(4), 707-715. https://doi.org/https://doi.org/10.24425/aoa.2018.125164
Proshansky, H. M., Fabian, A. K., & Kaminoff, R. (1983). Place-identity: Physical world socialization of the self Journal of Environmental Psychology, 3(1), 57-83. https://doi.org/https://doi.org/10.1016/S0272-4944(83)80021-8
Rabiyantia, Rahmaniar, I., & Putra, J. C. P. (2017). Effect of acoustic and thermal comfort to support learning process in a university [Engineering Physics International Conference, EPIC 2016]. Procedia Engineering, 170, 280-285. https://doi.org/https://doi.org/10.1016/j.proeng.2017.03.027
Russo, D., & Ruggiero, A. (2019). Choice of the optimal acoustic design of a school classroom and experimental verification. Applied Acoustics, 146, 280-287. https://doi.org/https://doi.org/10.1016/j.apacoust.2018.11.019
Sabtalistia, Y. A. (2020). Perbaikan waktu dengung ruang kuliah dengan optimalisasi model ruangan dan jenis material. Pawon: Jurnal Arsitektur, 4(1), 65-76. https://doi.org/https://doi.org/10.36040/pawon.v4i01.2347
Sarrico, C., Tice, J., & Rodrigues, C. (2004). Managing performance in a Portuguese secondary school using the balanced scorecard. Performance Measurement and Management, Edinburgh, UK. (Original Publication)
Schiavetti, N. (1992). Scaling procedures for the measurement of speech intelligibility In R. D. Kent (Ed.), Intelligibility in Speech Disorders. Theory Measurement and Management.
Shams, S., & Ramakrishnan, R. (2012). Acoustic metrics for classroom performance- A literature revie. Canadian Acoustics, 40(3), 100-102. https://jcaa.caa-aca.ca/index.php/jcaa/article/view/2559
Shield, B., Conetta, R., Dockrell, J., Connolly, D., Cox, T., & Mydlarz, C. (2015). A survey of acoustic conditions and noise levels in secondary school classrooms in England. The Journal of the Acoustical Society of America, 137(1), 177-188. https://doi.org/https://doi.org/10.1121/1.4904528
Sivanantham, G., Thyla, P., Loganathan, P., & S, S. (2019). Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. April 2019Journal of Natural Fibers, 17(8), 1-20. https://doi.org/10.1080/15440478.2019.1598913
Suleman, Q. (2014). Effects of Classroom Physical Environment on the Academic Achievement Scores of Secondary School Students in Kohat Division, Pakistan. International Journal of Learning & Development, 4(1), 71-82. https://doi.org/https://doi.org/10.5296/ijld.v4i1.5174
Titze, R. (2001). Acoustic interpretation of resonant voice. Journal of voice, 15(4), 519-528. https://doi.org/https://doi.org/10.1016/S0892-1997(01)00052-2
Yang, Z., Becerik-Gerber, B., & Mino, L. (2013). A study on student perceptions of higher education classrooms: Impact of classroom attributes on student satisfaction and performance. Building and Environment, 70. https://doi.org/https://doi.org/10.1016/j.buildenv.2013.08.030
Bistafa, S. R., & Bradley, J. S. (2000). Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. The Journal of the Acoustical Society of America, 107, 861-875. https://doi.org/https://doi.org/10.1121/1.428268
Bradley, J. S. (1986). Speech intelligibility studies in classrooms. The Journal of the Acoustical Society of America, 80(3), 846-854. https://doi.org/10.1121/1.393908
Bradlow, A. R. (1995). A comparative acoustic study of English and Spanish vowels. The Journal of the Acoustical Society of America, 97(3), 1916-1924. https://doi.org/https://doi.org/10.1121/1.412064
Choi, C. Y., & McPherson, B. (2005). Noise Levels in Hong Kong Primary Schools: Implications for classroom listening. International Journal of Disability, Development and Education, 52(4), 345-360. https://doi.org/https://doi.org/10.1080/10349120500348714
Choi, S., Guerin, D. A., Kim, H.-Y., Brigham, J. K., & Bauer, T. (2013). Indoor environmental quality of classrooms and student outcomes: A path analysis approach. Journal of Learning Spaces, 2(2).
Crandell, C. C., & Smaldino, J. J. (2000). Classroom acoustics for children with normal hearing and hearing impairment. Language, speech, and hearing services in schools, 31(362-370). https://doi.org/https://doi.org/10.1044/0161-1461.3104.362.
Dada, S., Flores, C., Bastable, K., & Schlosser, R. W. (2021). The effects of augmentative and alternative communication interventions on the receptive language skills of children with developmental disabilities: A scoping review. International Journal of Speech-Language Pathology, 23(3), 247-257. https://doi.org/10.1080/17549507.2020.1797165
Dockrell, J. E., & Shield, B. M. (2006). Acoustical barriers in classrooms: The impact of noise on performance in the classroom. British Educational Research Journal, 32(3), 509-525. https://doi.org/https://doi.org/10.1080/01411920600635494
Earthman, G. I. (2004). Prioritization of 31 criteria for school building adequacy.
Garcia, D. P., Rasmussen, B., & Brunskog, J. (2014). Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective. Forum Acusticum 2014, Krakow. (Original Publication)
Gheller, F., Lovo, E., Arsie, A., & Bovo, R. (2019). Classroom acoustics: Listening problems in children. Building Acoustics, 27(1), 47-59. https://doi.org/https://doi.org/10.1177/1351010X19886035
Goldsworthy, R. L., & Greenberg, J. E. (2004). Analysis of speech-based Speech Transmission Index methods with implications for nonlinear operations. The Journal of the Acoustical Society of America, 116(6), 3679-3689. https://doi.org/10.1121/1.1804628
Guardino, C., & Antia, S. D. (2012). Modifying the Classroom Environment to Increase Engagement and Decrease Disruption with Students Who Are Deaf or Hard of Hearing. The Journal of Deaf Studies and Deaf Education, 17(4), 518-533. https://doi.org/https://doi.org/10.1093/deafed/ens026
Harrington, J., Palethorpe, S., & Watson, C. (2000). Monophthongal vowel changes in Received Pronunciation: an acoustic analysis of the Queen's Christmas broadcasts. Journal of the International Phonetic Association, 30(1), 63-78.
Hasbullah, A., Zahari, W. Y. W., Ismail, M., & Vitasari, P. (2011). A framework study of school facilities performance in public primary school of Batubara district in Indonesia. Procedia-Social and Behavioral Sciences, 15, 3708-3712. https://doi.org/10.1016/j.sbspro.2011.04.360
Hodgson, M., & Nosal, E.-M. (2002). Effect of noise and occupancy on optimal reverberation times for speech intelligibility in classrooms. The Journal of the Acoustical Society of America, 111(2), 931-939. https://doi.org/https://doi.org/10.1121/1.1428264
Hongisto, V., Saarinen, P., Alakoivu, R., & Hakala, J. (2022). Acoustic properties of commercially available thermal insulators − An experimental study. Journal of Building Engineering, 54. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104588
Hopkins, C. P. (2003). Vibration transmission between coupled plates using finite element methods and statistical energy analysis. Part 2: The effect of window apertures in masonry flanking walls. Applied Acoustics, 6(10), 975-997. https://doi.org/https://doi.org/10.1016/S0003-682X(03)00063-X
James, D., Stead, M., Clifton-Brown, D., & Scott, D. (2012). A cost benefit analysis of providing a ‘sound’ environment in educational facilities. Acoustics 2012, Fremantle, Australia. (Original Publication)
Jenkins, A., & Mostafa, T. (2015). The effects of learning on wellbeing for older adults in England. Ageing & Society, 35(10), 2053-2070. https://doi.org/https://doi.org/10.1017/S0144686X14000762
Jo, b. A.-H., Park, C.-J., & Haan, C.-H. (2022). Investigation of the Appropriate Reverberation Time for Lower-Grade Elementary School Classrooms Using Speech Intelligibility Tests. Buildings, 12(6), 808. https://doi.org/https://doi.org/10.3390/buildings12060808
Kolarik, A. J., Raman, R., Moore, B. C. J., Cirstea, S., Gopalakrishnan, S., & Pardhan, S. (2020). The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports, 28(10), 7169. https://doi.org/https://doi.org/10.1038/s41598-020-64306-8
Kuttruff, H. (2016). Room Acoustics. CRC Press. https://doi.org/https://doi.org/10.1201/9781315372150
Levi, S. V., Winters, S. J., & Pisoni, D. B. (2007). Speaker-independent factors affecting the perception of foreign accent in a second language. The Journal of the Acoustical Society of America, 121(4), 2327-2338. https://doi.org/https://doi.org/10.1121/1.2537345
Maekawa, Z. Noise reduction by distance from sources of various shapes. Applied Acoustics, 3(3), 225-238. https://doi.org/https://doi.org/10.1016/0003-682X(70)90027-7
Mealings, K. (2022). Classroom acoustics and cognition: A review of the effects of noise and reverberation on primary school children’s attention and memory. Building Acoustics, 29(3), 401-431. https://doi.org/https://doi.org/10.1177/1351010X221104892
Mikulski, W., & Radosz, J. (2011). Acoustics of Classrooms in Primary Schools – Results of the Reverberation Time and the Speech Transmission Index Assessments in Selected Buildings. Archives of Acoustics, 36(4), 777-793.
Morris, R. F. (2003). The relationships among school facility characteristics, student achievement, and job satisfaction levels among teachers University of Georgia]. Athens, Georgia.
Napoli, M., Krech, P. R., & Holley, L. C. (2008). Mindfulness Training for Elementary School Students: The Attention Academy. Journal of Applied School Psychology, 21(1), 99-125. https://doi.org/https://doi.org/10.1300/J370v21n01_05
Pasamurti, T., & Iyati, W. (2018). Rekayasa Desain Akustik Ruang Kelas SDN Kauffman 1 Malang Universitas Brawijaya]. Malang.
Prasetiyo, I., Desendra, G., Hermanto, M. N., & Adhika, D. R. (2018). On Woven Fabric Sound Absorption Prediction. Archives of Acoustics(4), 707-715. https://doi.org/https://doi.org/10.24425/aoa.2018.125164
Proshansky, H. M., Fabian, A. K., & Kaminoff, R. (1983). Place-identity: Physical world socialization of the self Journal of Environmental Psychology, 3(1), 57-83. https://doi.org/https://doi.org/10.1016/S0272-4944(83)80021-8
Rabiyantia, Rahmaniar, I., & Putra, J. C. P. (2017). Effect of acoustic and thermal comfort to support learning process in a university [Engineering Physics International Conference, EPIC 2016]. Procedia Engineering, 170, 280-285. https://doi.org/https://doi.org/10.1016/j.proeng.2017.03.027
Russo, D., & Ruggiero, A. (2019). Choice of the optimal acoustic design of a school classroom and experimental verification. Applied Acoustics, 146, 280-287. https://doi.org/https://doi.org/10.1016/j.apacoust.2018.11.019
Sabtalistia, Y. A. (2020). Perbaikan waktu dengung ruang kuliah dengan optimalisasi model ruangan dan jenis material. Pawon: Jurnal Arsitektur, 4(1), 65-76. https://doi.org/https://doi.org/10.36040/pawon.v4i01.2347
Sarrico, C., Tice, J., & Rodrigues, C. (2004). Managing performance in a Portuguese secondary school using the balanced scorecard. Performance Measurement and Management, Edinburgh, UK. (Original Publication)
Schiavetti, N. (1992). Scaling procedures for the measurement of speech intelligibility In R. D. Kent (Ed.), Intelligibility in Speech Disorders. Theory Measurement and Management.
Shams, S., & Ramakrishnan, R. (2012). Acoustic metrics for classroom performance- A literature revie. Canadian Acoustics, 40(3), 100-102. https://jcaa.caa-aca.ca/index.php/jcaa/article/view/2559
Shield, B., Conetta, R., Dockrell, J., Connolly, D., Cox, T., & Mydlarz, C. (2015). A survey of acoustic conditions and noise levels in secondary school classrooms in England. The Journal of the Acoustical Society of America, 137(1), 177-188. https://doi.org/https://doi.org/10.1121/1.4904528
Sivanantham, G., Thyla, P., Loganathan, P., & S, S. (2019). Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. April 2019Journal of Natural Fibers, 17(8), 1-20. https://doi.org/10.1080/15440478.2019.1598913
Suleman, Q. (2014). Effects of Classroom Physical Environment on the Academic Achievement Scores of Secondary School Students in Kohat Division, Pakistan. International Journal of Learning & Development, 4(1), 71-82. https://doi.org/https://doi.org/10.5296/ijld.v4i1.5174
Titze, R. (2001). Acoustic interpretation of resonant voice. Journal of voice, 15(4), 519-528. https://doi.org/https://doi.org/10.1016/S0892-1997(01)00052-2
Yang, Z., Becerik-Gerber, B., & Mino, L. (2013). A study on student perceptions of higher education classrooms: Impact of classroom attributes on student satisfaction and performance. Building and Environment, 70. https://doi.org/https://doi.org/10.1016/j.buildenv.2013.08.030